27 research outputs found

    Contrasting population genetic structure for workers and queens in the putatively unicolonial ant Formica exsecta

    Get PDF
    The theory of inclusive fitness provides a powerful explanation for reproductive altruism in social insects, whereby workers gain inclusive fitness benefit by rearing the brood of related queens. Some ant species, however, have unicolonial population structures where multiple nests, each containing numerous queens, are interconnected and individuals move freely between nests. In such cases, nestmate relatedness values may often be indistinguishable from zero, which is problematic for inclusive fitness-based explanations of reproductive altruism. We conducted a detailed population genetic study in the polygynous ant Formica exsecta, which has been suggested to form unicolonial populations in its native habitat. Analyses based on adult workers indeed confirmed a genetic structuring consistent with a unicolonial population structure. However, at the population level the genetic structuring inferred from worker pupae was not consistent with a unicolonial population structure, but rather suggested a multicolonial population structure of extended family-based nests. These contrasting patterns suggest limited queen dispersal and free adult worker dispersal. That workers indeed disperse as adults was confirmed by mark-recapture measures showing consistent worker movement between nests. Together, these findings describe a new form of social organization, which possibly also characterizes other ant species forming unicolonial populations in their native habitats. Moreover, the genetic analyses also revealed that while worker nestmate relatedness was indistinguishable from zero at a small geographical scale, it was significantly positive at the population level. This highlights the need to consider the relevant geographical scale when investigating the role of inclusive fitness as a selective force maintaining reproductive altruism

    In Vitro Cultivation of 'Unculturable' Oral Bacteria, Facilitated by Community Culture and Media Supplementation with Siderophores

    Get PDF
    Over a third of oral bacteria are as-yet-uncultivated in-vitro. Siderophores have been previously shown to enable in-vitro growth of previously uncultivated bacteria. The objective of this study was to cultivate novel oral bacteria in siderophore-supplemented culture media. Various compounds with siderophore activity, including pyoverdines-Fe-complex, desferricoprogen and salicylic acid, were found to stimulate the growth of difficult-to-culture strains Prevotella sp. HOT-376 and Fretibacterium fastidiosum. Furthermore, pyrosequencing analysis demonstrated increased proportions of the as-yet-uncultivated phylotypes Dialister sp. HOT-119 and Megasphaera sp. HOT-123 on mixed culture plates supplemented with siderophores. Therefore a culture model was developed, which incorporated 15 μg siderophore (pyoverdines-Fe-complex or desferricoprogen) or 150 μl neat subgingival-plaque suspension into a central well on agar plates that were inoculated with heavily-diluted subgingival-plaque samples from subjects with periodontitis. Colonies showing satellitism were passaged onto fresh plates in co-culture with selected helper strains. Five novel strains, representatives of three previously-uncultivated taxa (Anaerolineae bacterium HOT-439, the first oral taxon from the Chloroflexi phylum to have been cultivated; Bacteroidetes bacterium HOT-365; and Peptostreptococcaceae bacterium HOT-091) were successfully isolated. All novel isolates required helper strains for growth, implying dependence on a biofilm lifestyle. Their characterisation will further our understanding of the human oral microbiome

    Correlates of Cooperation in a One-Shot High-Stakes Televised Prisoners' Dilemma

    Get PDF
    Explaining cooperation between non-relatives is a puzzle for both evolutionary biology and the social sciences. In humans, cooperation is often studied in a laboratory setting using economic games such as the prisoners' dilemma. However, such experiments are sometimes criticized for being played for low stakes and by misrepresentative student samples. Golden balls is a televised game show that uses the prisoners' dilemma, with a diverse range of participants, often playing for very large stakes. We use this non-experimental dataset to investigate the factors that influence cooperation when “playing” for considerably larger stakes than found in economic experiments. The game show has earlier stages that allow for an analysis of lying and voting decisions. We found that contestants were sensitive to the stakes involved, cooperating less when the stakes were larger in both absolute and relative terms. We also found that older contestants were more likely to cooperate, that liars received less cooperative behavior, but only if they told a certain type of lie, and that physical contact was associated with reduced cooperation, whereas laughter and promises were reliable signals or cues of cooperation, but were not necessarily detected

    Cultivation strategies for growth of uncultivated bacteria.

    Get PDF
    BACKGROUND: The majority of environmental bacteria and around a third of oral bacteria remain uncultivated. Furthermore, several bacterial phyla have no cultivable members and are recognised only by detection of their DNA by molecular methods. Possible explanations for the resistance of certain bacteria to cultivation in purity in vitro include: unmet fastidious growth requirements; inhibition by environmental conditions or chemical factors produced by neighbouring bacteria in mixed cultures; or conversely, dependence on interactions with other bacteria in the natural environment, without which they cannot survive in isolation. Auxotrophic bacteria, with small genomes lacking in the necessary genetic material to encode for essential nutrients, frequently rely on close symbiotic relationships with other bacteria for survival, and may therefore be recalcitrant to cultivation in purity. HIGHLIGHT: Since in-vitro culture is essential for the comprehensive characterisation of bacteria, particularly with regard to virulence and antimicrobial resistance, the cultivation of uncultivated organisms has been a primary focus of several research laboratories. Many targeted and open-ended strategies have been devised and successfully used. Examples include: the targeted detection of specific bacteria in mixed plate cultures using colony hybridisation; growth in simulated natural environments or in co-culture with 'helper' strains; and modified media preparation techniques or development of customised media eg. supplementation of media with potential growth-stimulatory factors such as siderophores. CONCLUSION: Despite significant advances in recent years in methodologies for the cultivation of previously uncultivated bacteria, a substantial proportion remain to be cultured and efforts to devise high-throughput strategies should be a high priority.This work was supported by The National Institute of Dental and Craniofacial Research of the National Institutes of Health under award R37DE01693

    Between-group competition elicits within-group cooperation in children

    Get PDF
    Aggressive interactions between groups are frequent in human societies and can bear significant fitness costs and benefits (e.g. death or access to resources). During between-group competitive interactions, more cohesive groups (i.e. groups formed by individuals who cooperate in group defence) should out-perform less cohesive groups, other factors being equal (e.g. group size). The cost/benefit of between-group competition are thought to have driven correlated evolution of traits that favour between-group aggression and within-group cooperation (e.g. parochial altruism). Our aim was to analyse whether the proximate relationship between between-group competition and within-group cooperation is found in 3–10 years old children and the developmental trajectory of such a relationship. We used a large cohort of children (n = 120) and tested whether simulated between-group competition increased within-group cooperation (i.e. how much of a resource children were giving to their group companions) in two experiments. We found greater within-group cooperation when groups of four children were competing with other groups then in the control condition (no between-group competition). Within-group cooperation increased with age. Our study suggests that parochial altruism and in-group/out-group biases emerge early during the course of human development

    Uropathogenic Escherichia coli P and Type 1 Fimbriae Act in Synergy in a Living Host to Facilitate Renal Colonization Leading to Nephron Obstruction

    Get PDF
    The progression of a natural bacterial infection is a dynamic process influenced by the physiological characteristics of the target organ. Recent developments in live animal imaging allow for the study of the dynamic microbe-host interplay in real-time as the infection progresses within an organ of a live host. Here we used multiphoton microscopy-based live animal imaging, combined with advanced surgical procedures, to investigate the role of uropathogenic Escherichia coli (UPEC) attachment organelles P and Type 1 fimbriae in renal bacterial infection. A GFP+ expressing variant of UPEC strain CFT073 and genetically well-defined isogenic mutants were microinfused into rat glomerulus or proximal tubules. Within 2 h bacteria colonized along the flat squamous epithelium of the Bowman's capsule despite being exposed to the primary filtrate. When facing the challenge of the filtrate flow in the proximal tubule, the P and Type 1 fimbriae appeared to act in synergy to promote colonization. P fimbriae enhanced early colonization of the tubular epithelium, while Type 1 fimbriae mediated colonization of the center of the tubule via a mechanism believed to involve inter-bacterial binding and biofilm formation. The heterogeneous bacterial community within the tubule subsequently affected renal filtration leading to total obstruction of the nephron within 8 h. Our results reveal the importance of physiological factors such as filtration in determining bacterial colonization patterns, and demonstrate that the spatial resolution of an infectious niche can be as small as the center, or periphery, of a tubule lumen. Furthermore, our data show how secondary physiological injuries such as obstruction contribute to the full pathophysiology of pyelonephritis

    Mating skew in Barbary macaque males: the role of female mating synchrony, female behavior, and male–male coalitions

    Get PDF
    A fundamental question of sexual selection theory concerns the causes and consequences of reproductive skew among males. The priority of access (PoA) model (Altmann, Ann NY Acad Sci 102:338–435, 1962) has been the most influential framework in primates living in permanent, mixed-sex groups, but to date it has only been tested with the appropriate data on female synchrony in a handful of species. In this paper, we used mating data from one large semi-free ranging group of Barbary macaques: (1) to provide the first test of the priority-of-access model in this species, using mating data from 11 sexually active females (including six females that were implanted with a hormonal contraceptive but who showed levels of sexual activity comparable to those of naturally cycling females) and (2) to determine the proximate mechanism(s) underlying male mating skew. Our results show that the fit of the observed distribution of matings with sexually attractive females to predictions of the PoA model was poor, with lower-ranking males mating more than expected. While our work confirms that female mating synchrony sets an upper limit to monopolization by high-ranking individuals, other factors are also important. Coalitionary activity was the main tactic used by males to lower mating skew in the study group. Coalitions were expressed in a strongly age-related fashion and allowed subordinate, post-prime males to increase their mating success by targeting more dominant, prime males. Conversely, females, while mating promiscuously with several males during a given mating cycle, were more likely to initiate their consortships with prime males, thus reducing the overall effectiveness of coalitions. We conclude that high-ranking Barbary macaque males have a limited ability to monopolize mating access, leading to a modest mating skew among them

    Metabolic and demographic feedbacks shape the emergent spatial structure and function of microbial communities

    Get PDF
    Microbes are predominantly found in surface-attached and spatially structured polymicrobial communities. Within these communities, microbial cells excrete a wide range of metabolites, setting the stage for interspecific metabolic interactions. The links, however, between metabolic and ecological interactions (functional relationships), and species spatial organization (structural relationships) are still poorly understood. Here, we use an individual-based modelling framework to simulate the growth of a two-species surface-attached community where food (resource) is traded for detoxification (service) and investigate how metabolic constraints of individual species shape the emergent structural and functional relationships of the community. We show that strong metabolic interdependence drives the emergence of mutualism, robust interspecific mixing, and increased community productivity. Specifically, we observed a striking and highly stable emergent lineage branching pattern, generating a persistent lineage mixing that was absent when the metabolic exchange was removed. These emergent community properties are driven by demographic feedbacks, such that aid from neighbouring cells directly enhances focal cell growth, which in turn feeds back to neighbour fecundity. In contrast, weak metabolic interdependence drives conflict (exploitation or competition), and in turn greater interspecific segregation. Together, these results support the idea that species structural and functional relationships represent the net balance of metabolic interdependencies

    Where less may be more: how the rare biosphere pulls ecosystems strings

    Get PDF
    Rare species are increasingly recognized as crucial, yet vulnerable components of Earth’s ecosystems. This is also true for microbial communities, which are typically composed of a high number of relatively rare species. Recent studies have demonstrated that rare species can have an over-proportional role in biogeochemical cycles and may be a hidden driver of microbiome function. In this review, we provide an ecological overview of the rare microbial biosphere, including causes of rarity and the impacts of rare species on ecosystem functioning. We discuss how rare species can have a preponderant role for local biodiversity and species turnover with rarity potentially bound to phylogenetically conserved features. Rare microbes may therefore be overlooked keystone species regulating the functioning of host-associated, terrestrial and aquatic environments. We conclude this review with recommendations to guide scientists interested in investigating this rapidly emerging research area
    corecore