263 research outputs found

    Integrating large-scale stationary and local mobile measurements to estimate hyperlocal long-term air pollution using transfer learning methods

    Get PDF
    Mobile air quality measurements are collected typically for several seconds per road segment and in specific timeslots (e.g., working hours). These short-term and on-road characteristics of mobile measurements become the ubiquitous shortcomings of applying land use regression (LUR) models to estimate long-term concentrations at residential addresses. This issue was previously found to be mitigated by transferring LUR models to the long-term residential domain using routine long-term measurements in the studied region as the transfer target (local scale). However, long-term measurements are generally sparse in individual cities. For this scenario, we propose an alternative by taking long-term measurements collected over a larger geographical area (global scale) as the transfer target and local mobile measurements as the source (Global2Local model). We empirically tested national, airshed countries (i.e., national plus neighboring countries) and Europe as the global scale in developing Global2Local models to map nitrogen dioxide (NO(2)) concentrations in Amsterdam. The airshed countries scale provided the lowest absolute errors, and the Europe-wide scale had the highest R(2). Compared to a "global" LUR model (trained exclusively with European-wide long-term measurements), and a local mobile LUR model (using mobile data from Amsterdam only), the Global2Local model significantly reduced the absolute error of the local mobile LUR model (root-mean-square error, 6.9 vs 12.6 mug/m(3)) and improved the percentage explained variances compared to the global model (R(2), 0.43 vs 0.28, assessed by independent long-term NO(2) measurements in Amsterdam, n = 90). The Global2Local method improves the generalizability of mobile measurements in mapping long-term residential concentrations with a fine spatial resolution, which is preferred in environmental epidemiological studies

    Robustness of intra urban land-use regression models for ultrafine particles and black carbon based on mobile monitoring.

    Get PDF
    Land-use regression (LUR) models for ultrafine particles (UFP) and Black Carbon (BC) in urban areas have been developed using short-term stationary monitoring or mobile platforms in order to capture the high variability of these pollutants. However, little is known about the comparability of predictions of mobile and short-term stationary models and especially the validity of these models for assessing residential exposures and the robustness of model predictions developed in different campaigns. We used an electric car to collect mobile measurements (n = 5236 unique road segments) and short-term stationary measurements (3 × 30min, n = 240) of UFP and BC in three Dutch cities (Amsterdam, Utrecht, Maastricht) in 2014-2015. Predictions of LUR models based on mobile measurements were compared to (i) measured concentrations at the short-term stationary sites, (ii) LUR model predictions based on short-term stationary measurements at 1500 random addresses in the three cities, (iii) externally obtained home outdoor measurements (3 × 24h samples; n = 42) and (iv) predictions of a LUR model developed based upon a 2013 mobile campaign in two cities (Amsterdam, Rotterdam). Despite the poor model R(2) of 15%, the ability of mobile UFP models to predict measurements with longer averaging time increased substantially from 36% for short-term stationary measurements to 57% for home outdoor measurements. In contrast, the mobile BC model only predicted 14% of the variation in the short-term stationary sites and also 14% of the home outdoor sites. Models based upon mobile and short-term stationary monitoring provided fairly high correlated predictions of UFP concentrations at 1500 randomly selected addresses in the three Dutch cities (R(2) = 0.64). We found higher UFP predictions (of about 30%) based on mobile models opposed to short-term model predictions and home outdoor measurements with no clear geospatial patterns. The mobile model for UFP was stable over different settings as the model predicted concentration levels highly correlated to predictions made by a previously developed LUR model with another spatial extent and in a different year at the 1500 random addresses (R(2) = 0.80). In conclusion, mobile monitoring provided robust LUR models for UFP, valid to use in epidemiological studies

    Full-field implementation of a perfect eavesdropper on a quantum cryptography system

    Full text link
    Quantum key distribution (QKD) allows two remote parties to grow a shared secret key. Its security is founded on the principles of quantum mechanics, but in reality it significantly relies on the physical implementation. Technological imperfections of QKD systems have been previously explored, but no attack on an established QKD connection has been realized so far. Here we show the first full-field implementation of a complete attack on a running QKD connection. An installed eavesdropper obtains the entire 'secret' key, while none of the parameters monitored by the legitimate parties indicate a security breach. This confirms that non-idealities in physical implementations of QKD can be fully practically exploitable, and must be given increased scrutiny if quantum cryptography is to become highly secure.Comment: Revised after editorial and peer-review feedback. This version is published in Nat. Commun. 8 pages, 6 figures, 1 tabl

    Long-term exposure to ultrafine particles and natural and cause-specific mortality

    Get PDF
    BACKGROUND: Health implications of long-term exposure to ubiquitously present ultrafine particles (UFP) are uncertain. The aim of this study was to investigate the associations between long-term UFP exposure and natural and cause-specific mortality (including cardiovascular disease (CVD), respiratory disease, and lung cancer) in the Netherlands. METHODS: A Dutch national cohort of 10.8 million adults aged >/= 30 years was followed from 2013 until 2019. Annual average UFP concentrations were estimated at the home address at baseline, using land-use regression models based on a nationwide mobile monitoring campaign performed at the midpoint of the follow-up period. Cox proportional hazard models were applied, adjusting for individual and area-level socio-economic status covariates. Two-pollutant models with the major regulated pollutants nitrogen dioxide (NO(2)) and fine particles (PM(2)(.)(5) and PM(10)), and the health relevant combustion aerosol pollutant (elemental carbon (EC)) were assessed based on dispersion modelling. RESULTS: A total of 945,615 natural deaths occurred during 71,008,209 person-years of follow-up. The correlation of UFP concentration with other pollutants ranged from moderate (0.59 (PM(2)(.)(5))) to high (0.81 (NO(2))). We found a significant association between annual average UFP exposure and natural mortality [HR 1.012 (95 % CI 1.010-1.015), per interquartile range (IQR) (2723 particles/cm(3)) increment]. Associations were stronger for respiratory disease mortality [HR 1.022 (1.013-1.032)] and lung cancer mortality [HR 1.038 (1.028-1.048)] and weaker for CVD mortality [HR 1.005 (1.000-1.011)]. The associations of UFP with natural and lung cancer mortality attenuated but remained significant in all two-pollutant models, whereas the associations with CVD and respiratory mortality attenuated to the null. CONCLUSION: Long-term UFP exposure was associated with natural and lung cancer mortality among adults independently from other regulated air pollutants

    Controlling passively-quenched single photon detectors by bright light

    Full text link
    Single photon detectors based on passively-quenched avalanche photodiodes can be temporarily blinded by relatively bright light, of intensity less than a nanowatt. I describe a bright-light regime suitable for attacking a quantum key distribution system containing such detectors. In this regime, all single photon detectors in the receiver Bob are uniformly blinded by continuous illumination coming from the eavesdropper Eve. When Eve needs a certain detector in Bob to produce a click, she modifies polarization (or other parameter used to encode quantum states) of the light she sends to Bob such that the target detector stops receiving light while the other detector(s) continue to be illuminated. The target detector regains single photon sensitivity and, when Eve modifies the polarization again, produces a single click. Thus, Eve has full control of Bob and can do a successful intercept-resend attack. To check the feasibility of the attack, 3 different models of passively-quenched detectors have been tested. In the experiment, I have simulated the intensity diagrams the detectors would receive in a real quantum key distribution system under attack. Control parameters and side effects are considered. It appears that the attack could be practically possible.Comment: Experimental results from a third detector model added. Minor corrections and edits made. 11 pages, 10 figure

    Affinity chromatography in dynamic combinatorial libraries: one-pot amplification and isolation of a strongly binding receptor

    Get PDF
    We report the one-pot amplification and isolation of a nanomolar receptor in a multibuilding block aqueous dynamic combinatorial library using a polymer-bound template. By appropriate choice of a poly(N,N-dimethylacrylamide)-based support, unselective ion-exchange type behaviour between the oppositely charged cationic guest and polyanionic hosts was overcome, such that the selective molecular recognition arising in aqueous solution reactions is manifest also in the analogous templated solid phase DCL syntheses. The ability of a polymer bound template to identify and isolate a synthetic receptor via dynamic combinatorial chemistry was not compromised by the large size of the library, consisting of well over 140 theoretical members, demonstrating the practical advantages of a polymer-supported DCL methodology

    Human factors and missed solutions to Enigma design weaknesses

    Get PDF
    The German World War II Enigma suffered from design weaknesses that facilitated its large-scale decryption by the British throughout the war. The author shows that the main technical weaknesses (self-coding and reciprocal coding) could have been avoided using simple contemporary technology, and therefore the true cause of the weaknesses is not technological but must be sought elsewhere. Specifically, human factors issues resulted in the persistent failure to seek out more effective designs. Similar limitations seem to beset the literature on the period, which misunderstands the Enigma weaknesses and therefore inhibits broader thinking about design or realising the critical role of human factors engineering in cryptography

    Framework to Support the Process of Decision-Making on Life-Sustaining Treatments in the ICU: Results of a Delphi Study

    Get PDF
    Objectives: To develop a consensus framework that can guide the process of decision-making on continuing or limiting life-sustaining treatments in ICU patients, using evidence-based items, supported by caregivers, patients, and surrogate decision makers from multiple countries. Design: A three-round web-based international Delphi consensus study with a priori consensus definition was conducted with experts from 13 countries. Participants reviewed items of the decision-making process on a seven-point Likert scale or with open-ended questions. Questions concerned terminology, content, and timing of decision-making steps. The summarized results (including mean scores) and expert suggestions were presented in the subsequent round for review. Setting: Web-based surveys of international participants representing ICU physicians, nurses, former ICU patients, and surrogate decision makers. Patients: Not applicable. Interventions: Not applicable. Measurements and Main Results: In three rounds, respectively, 28, 28, and 27 (of 33 invited) physicians together with 12, 10, and seven (of 19 invited) nurses participated. Patients and surrogates were involved in round one and 12 of 27 responded. Caregivers were mostly working in university affiliated hospitals in Northern Europe. During the Delphi process, most items were modified in order to reach consensus. Seven items lacked consensus after three rounds. The final consensus framework comprises the content and timing of four elements; three elements focused on caregiver-surrogate communication (admission meeting, follow-up meeting, goals-of-care meeting); and one element (weekly time-out meeting) focused on assessing preferences, prognosis, and proportionality of ICU treatment among professionals. Conclusions: Physicians, nurses, patients, and surrogates generated a consensus-based framework to guide the process of decision-making on continuing or limiting life-sustaining treatments in the ICU. Early, frequent, and scheduled family meetings combined with a repeated multidisciplinary time-out meeting may support decisions in relation to patient preferences, prognosis, and proportionality

    Wheat-barley hybridization – the last forty years

    Get PDF
    Abstract Several useful alien gene transfers have been reported from related species into wheat (Triticum aestivum), but very few publications have dealt with the development of wheat/barley (Hordeum vulgare) introgression lines. An overview is given here of wheat 9 barley hybridization over the last forty years, including the development of wheat 9 barley hybrids, and of addition and translocation lines with various barley cultivars. A short summary is also given of the wheat 9 barley hybrids produced with other Hordeum species. The meiotic pairing behaviour of wheat 9 barley hybrids is presented, with special regard to the detection of wheat– barley homoeologous pairing using the molecular cytogenetic technique GISH. The effect of in vitro multiplication on the genome composition of intergeneric hybrids is discussed, and the production and characterization of the latest wheat/barley translocation lines are presented. An overview of the agronomical traits (b-glucan content, earliness, salt tolerance, sprouting resistance, etc.) of the newly developed introgression lines is given. The exploitation and possible use of wheat/barley introgression lines for the most up-to-date molecular genetic studies (transcriptome analysis, sequencing of flow-sorted chromosomes) are also discussed
    corecore