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Abstract 25 

 26 
Land-use regression (LUR) models for ultrafine particles (UFP) and Black Carbon (BC) in urban areas 27 

have been developed using short-term stationary monitoring or mobile platforms in order to capture 28 

the high variability of these pollutants. However, little is known about the comparability of 29 

predictions of mobile and short-term stationary models and especially the validity of these models 30 

for assessing residential exposures and the robustness of model predictions developed in different 31 

campaigns. 32 

We used an electric car to collect mobile measurements (n=5236 unique road segments) and short-33 

term stationary measurements (3x30min, n=240) of UFP and BC in three Dutch cities (Amsterdam, 34 

Utrecht, Maastricht) in 2014-2015. Predictions of LUR models based on mobile measurements were 35 

compared to (i) measured concentrations at the short-term stationary sites, (ii) LUR model 36 

predictions based on short-term stationary measurements at 1500 random addresses in the three 37 

cities, (iii) externally obtained home outdoor measurements (3x24hour samples; n=42) and (iv) 38 

predictions of a LUR model developed based upon a 2013 mobile campaign in two cities (Amsterdam, 39 

Rotterdam). 40 

Despite the poor model R2 of 15%, the ability of mobile UFP models to predict measurements with 41 

longer averaging time increased substantially from 36% for short-term stationary measurements to 42 

57% for home outdoor measurements. In contrast, the mobile BC model only predicted 14% of the 43 

variation in the short-term stationary sites and also 14% of the home outdoor sites. Models based 44 

upon mobile and short-term stationary monitoring provided fairly high correlated predictions of UFP 45 

concentrations at 1500 randomly selected addresses in the three Dutch cities (R2 =0.64). We found 46 

higher UFP predictions (of about 30%) based on mobile models opposed to short-term model 47 

predictions and home outdoor measurements with no clear geospatial patterns. The mobile model 48 

for UFP was stable over different settings as the model predicted concentration levels highly 49 

correlated to predictions made by a previously developed LUR model with another spatial extent and 50 

in a different year at the 1500 random addresses (R2=0.80). In conclusion, mobile monitoring 51 

provided robust LUR models for UFP, valid to use in epidemiological studies. 52 

Keywords: Mobile Monitoring, UFP, BC, LUR models, Spatial Variation 53 

   TOC Art.54 



1. Introduction 55 

Traffic is considered a major source of intra-urban air pollution1,2. Multiple studies have linked traffic 56 

proximity and traffic related air pollution to increased risks of adverse health effects3,4. With about 57 

75% of the population living in urban environments in Europe5, it is important to characterise intra-58 

urban air pollution with high spatial-resolution, especially for primary pollutants that exhibit large 59 

spatial variability within city limits such as ultrafine particles (UFP) and black carbon (BC)1,6,7. UFP and 60 

BC measurements are therefore increasingly performed with densely distributed networks or mobile 61 

platforms. Mobile monitoring provides the possibility to sample more spatially diverse environments 62 

in less time, with a limited number of monitoring devices. This is cost-effective and especially within 63 

city limits, it can capture the high variability of UFP and BC in a complex urban terrain8,9. 64 

Several land use regression (LUR) models for UFP and BC have been developed using mobile 65 

measurements in North America10–16 and Europe17,18, with promising results for effective exposure 66 

assessment. Mobile monitoring campaigns that developed LUR models used bikes10,11, cars12,13,16,18, 67 

public transport17 or walking with backpacks14,15 to collect their data. In a previous study, we 68 

developed UFP and BC models based on mobile measurements and found a high correlation (R2 ~ 69 

0.88) of model predictions with LUR models based on short-term stationary measurements (30min) 70 

from a combined (mobile and stationary) measurement campaign in two cities in The Netherlands18. 71 

The mobile model for UFP and BC did predict substantially (30-50%) higher concentrations than the 72 

short-term stationary model. 73 

Although these results were encouraging for the application of LUR models based on mobile 74 

monitoring campaigns in epidemiological research some questions remain. First, we want to confirm 75 

our previous observation of high correlation of mobile versus short-term models in a new campaign 76 

involving additional cities in a different year. Second, in contrast to our previous study we added 77 

home outdoor measurements (3 times 24h) allowing an unbiased comparison of the validity of both 78 

approaches. Third, we address the systematic difference in predicted concentration levels between 79 

mobile and short-term stationary models by exploring several methodologies to try to correct for this 80 

systematic difference. Fourth, we were interested if the derived LUR models are stable over space 81 

and time by comparing models derived from two independent measurements campaigns performed 82 

in 2013 and 2014/2015. 83 

 84 

2. Methods 85 
2.1 Study design 86 
We used five different sets of data as can be seen in the TOC Art and supporting information table 87 

A.1. Four of them (on the left of the red dotted line) were collected and retrieved from the 88 

EXPOsOMICS campaign, conducted in 2014/2015. Mobile measurements from the MUSiC campaign 89 

in 2013 (right side) were used in additional analyses. The MUSiC measurements and models have 90 

been extensively described in previous publications18–20. Data from the EXPOsOMICS campaign21 in 91 

the Netherlands consists of mobile, short-term stationary, and home outdoor 24h air pollution 92 

measurements. The study design and models, based upon short-term stationary monitoring in six 93 

study areas including the Netherlands, have been reported before22. 94 



We gathered mobile measurements between short-term stationary measurements (30 min) when 95 

driving from one site to the next; 240 short-term stationary sites and 5,236 unique road segments 96 

were sampled in the winter, spring and summer in 2014/2015. Measurements were about equally 97 

divided over 84 days and started after 9:15AM and stopped before 4:00PM. About 8 short-term sites 98 

were sampled each day over 8-10 routes per city and per season. This way, we captured the within-99 

day, day-to-day and seasonal variability of UFP and BC concentration levels23. Rush hour traffic was 100 

avoided for better comparability between road segments. Short-term stationary sites were selected 101 

with a wide range of traffic characteristics and land use in and around the cities of Amsterdam, 102 

Utrecht and Maastricht, The Netherlands. We selected traffic sites (>10,000 vehicles per day24), 103 

urban background sites, industrial areas, sites near urban green, regional background sites and sites 104 

near rivers or canals22. In further comparisons between traffic sites and urban background sites, all 105 

sites that are not traffic sites are considered urban background sites. 106 

Short-term stationary and on-road measurements were made using an electric vehicle (REVA, 107 

Mahindra Reva Electric Vehicles Pvt. Ltd., Bangalore, India). A condensation particle counter (TSI, CPC 108 

3007) and a micro Aethalometer (Aethlabs, CA, USA) were used to monitor UFP and BC 109 

concentrations respectively. The CPC had a measurement every second, whereas the Aethalometer 110 

averaged measurements over one minute. The geographical location of the electric car was recorded 111 

using a Global Positioning Unit (GPS, Garmin eTrex Vista) and linked to the instruments in the car 112 

based on date and time.  113 

To compare the predictions of UFP and BC exposure from mobile and short-term LUR models in the 114 

general population we used 1500 randomly selected addresses equally divided between Amsterdam, 115 

Utrecht and Maastricht. Furthermore, three temporally adjusted 24-hour measurements of UFP and 116 

PM2,5 absorbance (as a proxy for BC) were performed at home (outdoor) addresses at 42 locations in 117 

Utrecht and Amsterdam, according to protocols described by van Nunen et al22 and Eeftens et al.25 118 

UFP measurements were monitored using MiniDiSCs (Testo AG, Lenzkirch, Germany) which sampled 119 

every second. Previous studies have shown good agreement between CPCs and MiniDiSCs with 120 

limited differences in absolute values26,27. PM2,5 absorbance samples were measured using Harvard 121 

Impactors and were found to be highly correlated with Black  carbon25. These external addresses are 122 

referred to as “home outdoor sites” and used to compare LUR estimates at the home location from 123 

the mobile and short-term stationary LUR models (external validation).  124 

2.2 Data Aggregation 125 
Following our previous mobile monitoring measurement campaign18, we corrected for small spatial 126 

errors of the GPS by assigning all GPS points to the nearest road they were supposed to be on. Then 127 

we calculated average concentration levels of UFP per road segment, defined as a part of a road 128 

between two consecutive intersections11,12,15. Road segments in tunnels or on bridges were deleted 129 

from the dataset, as they are not representative for concentrations at residential addresses. Road 130 

segments were on average 110 meters long and accumulated 25 seconds of UFP data over the study 131 

period. 132 

BC concentrations were sampled at a one-minute interval, but this is often too short to detect 133 

reliable changes in concentration levels18,28. To reduce the noise of the instrument Hagler et al28 134 

proposed a method to only assign minute averages when the attenuation value of the filter in the 135 

instrument increased sufficiently. In our campaign this meant that about one measurement was 136 

obtained every two or three minutes. So, minute values with a too small change in attenuation 137 



(>75% of the values) were averaged over time until the criteria was met. These values were then 138 

assigned to every road segment the car was on in that period (on average 7 road segments, ~ 140 139 

sec). When the BC measurement changed during a road segment, an average was calculated. 140 

2.3 Data Processing 141 
UFP values of 500 particles/cm3 or less were removed from the data set, as these reflect 142 

malfunctioning of the instrument. If the UFP data increased or decreased in one second by a factor 143 

10 or more, the data was removed as well. Both criteria were used in previous studies18–20 and 144 

resulted in less than 1% removal of UFP data. We defined observations during mobile monitoring 145 

influenced by local exhaust plumes if UFP concentration was three standard deviations above the 146 

previous measurement second, based on the concentrations distribution for that day. Observations 147 

remained flagged until they dropped beneath the day average plus one standard deviation. This is 148 

based on methods used by Drewnick et al.29 and Ranasinghe et al30. For the main analyses we used all 149 

measurements, including road segments with local exhaust plumes. For a sensitivity analysis, we 150 

excluded them. 151 

2.4 Temporal Variation 152 
A reference site with the same equipment as the electric vehicle and the home outdoor 153 

measurement sites was set up near Utrecht (about 2km outside the city border of Utrecht, 40km to 154 

Amsterdam and 140km to Maastricht), The Netherlands, to correct for temporal variation. We used 155 

the difference method for correcting the spatial data, following previous work in the stationary 156 

campaign22 and the previous mobile monitoring campaign18. First, the overall mean concentration of 157 

the entire campaign at the reference site was calculated. Next, for each minute at the reference site 158 

an average of 30 minutes around time x was calculated which was subtracted from the overall mean 159 

concentration at the reference site. The difference is then used to adjust the original concentration 160 

measured at the sampling locations. We co-located instruments when the instruments were 161 

transferred between cities to check comparability and found a median ratio (averaged over 1 minute) 162 

for the CPCs of 1.09 (SD=0.16) and 0.98 (SD=0.63) for the Aethalometers. 163 

2.5 Model Development 164 
In accordance with our previous and most other mobile monitoring studies11,12,15,18, we identified the 165 

middle of each road segment and used this coordinate to acquire GIS predictors for LUR modelling 166 

(overview of GIS predictors see Table A.2). In summary, a range of traffic variables was defined, 167 

including traffic intensity and road length variables (in 50m to 1000m buffers); ii) land use (e.g. port, 168 

industry, urban green, airports) and population / household density in buffers from 100 to 5000m. 169 

Inverse distance to roads was used in the stationary model development, but not in the mobile 170 

monitoring model as this variable cannot be computed (distance is 0).  171 

Variable selection was done using a supervised forward stepwise selection procedure18,19. The 172 

direction of the effect for the variables was determined a priori (Table A.2) and the variable with the 173 

highest adjusted R2 was entered first in the model. Model building stopped when new variables were 174 

not able to improve the adjusted R2. The variables in the resulting models were checked for p-value 175 

(removed when p-value >0.10), collinearity (variance inflation factor > 3 were removed), and 176 

influential observations (if Cook’s D > 1 the model was further examined). We accounted for 177 

autocorrelation in the mobile measurements using a first order autoregressive (AR-1) term in the 178 

ARIMA procedure9,11,14,31,32. If after adding an AR-1 term to the identified model, variables were no 179 

longer significant (p>0.10), they were removed from the model.  180 



2.6 Mobile LUR models versus Short-term stationary LUR Models 181 
Mobile models of the 2014/2015 campaign were compared to short-term stationary models using 182 

different analyses, schematically shown and according to the numbers in the TOC art. First, we 183 

predicted concentration levels at stationary measurement sites using the mobile LUR model and 184 

compared them to their respective short-term stationary measurements (1). Second, we compared 185 

mobile and short-term stationary models by predicting concentration on 500 random addresses in 186 

each city (2). Third, we compared stationary and mobile LUR model predictions to external average 187 

home outdoor measurements based upon three times 24hour monitoring periods (3). In all data sets 188 

the GIS predictors were truncated to the range observed in the mobile monitoring campaign. 189 

2.7 Overestimation of Mobile LUR models 190 
We compared differences in predicted concentrations from mobile and stationary measurements for 191 

both the 2014/2015 and 2013 campaign to help understand the overestimation of mobile models 192 

from the 2013 campaign18. We explored four methodologies: i. using the distance between the road 193 

and the site where the prediction is made as an explanatory variable for the over-prediction; ii. LUR 194 

analyses with the delta (difference between predicted concentrations based on mobile model and 195 

observed short-term measurement) as a dependent variable with the available LUR GIS variables, iii. 196 

using a global correction based on the absolute and iv. relative differences between the predicted 197 

and measured concentration on the short-term stationary sites. Predictions based on the mobile 198 

model could then be subtracted by an absolute or relative value. 199 

2.8 Robustness of Mobile LUR models 200 
Stability of mobile LUR models was tested by comparing predictions of the mobile LUR models 201 

presented in this paper based on measurements in 2014/2015 with mobile LUR models based on 202 

measurements in 201318 (4). To rule out geographical differences between the campaigns analyses 203 

were restricted to Amsterdam, which was the only city represented in both campaigns. Other 204 

sensitivity analyses included the addition of a fixed city effect to the model, exclusion of the 205 

autocorrelation procedure, and exclusion of local emission peaks before model development. 206 

 207 

3. Results 208 

3.1 Distribution of UFP and BC 209 
The distribution of road segment averaged UFP and BC measurements is shown in figure 1 and 210 

appendix table A.3 and figure A.1. Observed UFP and BC levels were on average higher on the road 211 

than at the short-term stationary sites, particularly the frequency of high UFP and BC concentrations 212 

is higher for mobile road segment averages than for short-term stationary averages. Stationary 213 

measurements are averaged over 30min, while mobile measurements are averaged over a road 214 

segment (about 25sec), thus partly explaining the lower variability in stationary measurements. In 215 

figure A.1, the distribution of UFP and BC measurements are stratified by city and site type (urban 216 

background (UB) and traffic). Measurements in Amsterdam were on average higher than 217 

measurements in the other two cities. Mobile UFP measurements were on average 1.44 times higher 218 

than short-term stationary UFP measurements. For BC, mobile measurements were on average 1.92 219 

times higher (Table A.3).  220 



   221 
Figure 1. Distribution of mobile and stationary UFP/BC measurements in 2014/2015. 222 
  The number of mobile measurements does not match the total of road segments (n=5,236), as the figure for 223 
UFP is cropped to a maximum 60,000 particles per cm

3 
and 10 µg/m

3 
for BC (Max UFP=209140 particles per cm

3
, 224 

max BC=38 µg/m
3
). Numbers above bars are their respective percentages of segments within that bin. 225 

 226 
3.2 UFP: Mobile LUR models versus Short-term stationary LUR Models  227 
The developed LUR models based on UFP mobile and short-term stationary measurements are 228 

shown in table 1. Both the short-term stationary and mobile models include similar population 229 

density and traffic related variables. The short-term stationary model includes industry in a 500m 230 

buffer whereas the mobile LUR model includes the area of ports and urban green area in the final 231 

model. As models were developed including an AR-1 term, we cannot report standard R2 values of 232 

our main mobile models. Instead, the reported R2 value is calculated by regressing the predicted 233 

concentrations based on the parameter estimates of the mobile AR-1 model without the AR-1 term. 234 

Due to the very short duration of measured concentrations and the large temporal variability, the R2 235 

value of the mobile monitoring model is low (15 %).  236 

 UFP (particles/cm
3
) 

Variable Short-Term  Mobile AR-1 

Intercept 7,784 (582) 8,072 (968) 

   

Population Density:   

Population density in a 5000m buffer 4,720 (977) 
a
  

Residential land area in a 5000m buffer  7,763 (1,155) 

   

Traffic:   

Traffic intensity on the nearest road 2,499 (860) 2,244 (756) 

Heavy traffic intensity on the nearest road  989 (536) 

Traffic intensity in a 50m buffer 3,459 (782)  

Length of major roads in a 50m buffer 2,873 (998)  

Length of major roads in a 100m buffer  4,588 (524) 

   

Land Use:   

Area of industry in a 500m buffer 854 (450)  

Port area in a 5000m buffer  3,457 (995) 

Urban green area in a 500m buffer  -1,001 (494) 

   

R
2
 of model 0.46 0.15 

b
 

Number sites used for model development 240 5,236 

Table 1. Mobile and Short-Term Stationary UFP Models.  237 
 
a 

Regression slopes and standard error (between brackets), multiplied by the difference between 10
th

 and 90
th

 238 
percentile for all predictors. 

b
 R

2
 of model without AR-1 term. 239 



Models were also developed including a fixed effect for city. These models did not differ substantially 240 

from the original models (table B.1). Other sensitivity analyses include models excluding the AR-1 241 

term from model development and first excluding measurements flagged as local exhaust plumes 242 

before model development. All models are very similar and predicted concentrations based on these 243 

models on 1500 random addresses (500 per measurement city) are highly correlated (R2 ~ 0.98; table 244 

B.1).    245 

Although the LUR model for UFP explained only a small percentage of the variance in mobile 246 

measurements the model explained a much larger proportion of the variance of the short-term 247 

stationary measurements. The mobile LUR model for UFP explained 36% of the variance in the short-248 

term stationary measurements (figure 2a), which is more than two times higher than the mobile 249 

model is able to explain its own measurements (15%). 250 

 251 
Figure 2. (a) Predicted concentration levels (particles/cm

3
) at stationary sites based on mobile LUR model 252 

compared to stationary measurements. (b) Comparison of predicted concentration levels based on mobile and 253 
stationary LUR models at 1,500 random addresses in Amsterdam (AMS), Utrecht (UTR) and Maastricht (MAA). 254 

a 

b 



Comparing predicted concentrations at random addresses (n=1500) revealed a strong correlation 255 

(R2=0.64) between mobile and short-term stationary model predictions (figure 2b). This correlation 256 

was reasonably similar for traffic and urban background sites (R2 of 0.71 vs. 0.60; results not shown). 257 

Figure 3 shows the correlation between predicted UFP concentrations for 42 home outdoor 258 

measurement sites and their respective average of 3 times 24h-measurements, based on the mobile 259 

(figure 3a) and short-term stationary model (figure 3b). The mobile model for UFP predicts 57% of 260 

the variation in the home outdoor measurements, whereas the short-term stationary model predicts 261 

46% of the variation. These results were consistent with new analyses of our previous campaign. The 262 

mobile model based on measurements from 2013 predicted 51% of the variance of home outdoor 263 

concentration levels in 2014/2015 (Figure B.1). 264 

 265 
Figure 3. Predicted concentration levels (particles/cm

3
)  at home outdoor sites (n=42) based on mobile models (a) 266 

and short-term stationary models (b) compared to the average of 3 x 24h measurements at home addresses.  267 

a 

b 



3.3 BC: Mobile LUR models versus Short-term stationary LUR Models  268 
Like the UFP models, the mobile and short-term stationary LUR models for BC include population 269 

density and nearby traffic variables in both models. For BC, urban green area is also included in the 270 

mobile model, similar as to the UFP mobile model. The LUR model and figures related to BC can be 271 

found in appendix C. The LUR model poorly explains the spatial variation in the mobile 272 

measurements (R2=0.10; table C.1), comparable to the UFP model. Similarities with UFP stop when 273 

we try to use the model to predict concentration levels at the short-term stationary and home 274 

outdoor sites. The mobile model explained only 14% of the variance in the short-term stationary 275 

measurements and 14% of the variation in the home outdoor measurements (Figure C.1/C.2). The 276 

stationary model explained 44% of the spatial variation in the stationary measurements (Table C.1) 277 

and 38% of the home outdoor measurements (Figure C.2). Mobile BC model predictions at 1500 278 

random households were only moderately correlated to the short-term stationary model predictions 279 

(R2=0.37; Figure C.1). 280 

Where the UFP mobile LUR was able to predict measurements with longer averaging periods (3x24h) 281 

with greater accuracy, the mobile BC model could not. Predictions made by the mobile model based 282 

on 2013 BC measurements were also poorly correlated to home outdoor measurements in the 283 

current study (R2=0.17). Results are shown in figure C.3, together with the results from the short-284 

term stationary model predictions. Since mobile LUR models for BC (from 2013 and 2014/2015) did 285 

not predict the measurements with longer averaging periods well, we did not precede with further 286 

analyses of the BC LUR models in this paper. It appears, due to the long averaging time of the 287 

instrument, that our measurement device is unable to capture the fine spatial scale needed in urban 288 

settings. 289 

3.4 Exploration of overestimation of mobile UFP LUR models 290 
In all analyses we observed higher predicted concentration levels based on mobile UFP models than 291 

predictions made by short-term stationary models, consistent with our previous work18.  Predictions 292 

made on randomly selected addresses were on average about 5000 particles/cm3 and 30% higher 293 

than models based on short-term stationary measurements (Table 2). No significant differences in 294 

overestimation were found between traffic and urban background sites. Predicted UFP 295 

concentrations based on mobile models also overestimated 24h home outdoor measurements. The 296 

2014/2015 mobile model overestimated the home outdoor measurements by 27% (about 4100 297 

particles/cm3 on average), whereas the short-term stationary models did not over-predict 298 

concentrations. 299 

We explored four methodologies to correct for the difference between mobile and short-term 300 

stationary predictions. Distance to the road was not related to the difference between mobile 301 

predictions and measured UFP for the short-term stationary sites and the home outdoor sites (figure 302 

B.2). We also developed several LUR models with the delta as dependent variable, but could not 303 

derive a reasonable and interpretable LUR Model. The other two methods considered are to 304 

compensate the overestimation of mobile LUR models by reducing the mobile predicted levels 305 

overall by 30% or 5000 particles/cm3. These methods were also compared to the short-term 306 

stationary predictions on random addresses. In these analyses, the relative reduction of 30% to the 307 

mobile model predicted concentration seems to have a better agreement with the short-term 308 

stationary model predictions (figure B.3). 309 

 310 



 2014-2015 Campaign 2013 Campaign 

Cities Amsterdam, Utrecht, and Maastricht Amsterdam and Rotterdam 

Seasons Winter, Spring and Summer Winter and Spring 

UFP over-prediction a     

- Traffic 
- Urban Background 

33% (5000 particles/cm
3
) 

25% (3600 particles/cm
3
)  

35% (5200 particles/cm
3
) 

29% (4200 particles/cm
3
) 

 31% (6000 particles/cm
3
)  

29% (4000 particles/cm
3
) 

Table 2. Differences between the 2013 and 2014/2015 mobile measurement campaigns.  311 
a
 Difference between predicted concentration levels based on mobile and short-term stationary LUR models, 312 

tested on 500 random addresses in Amsterdam. 313 
 314 
3.5 Robustness of mobile LUR models 315 
As we conducted measurement campaigns in 2013 and 2014/15 we were interested to see if the 316 

model predictions were similar when using measurements from different geographical and temporal 317 

settings for model development. Mobile models from the 2013 campaign (Table B.3) are based on 318 

measurements in Rotterdam and Amsterdam, both industrialised and busy cities with the presence 319 

of a harbour. The mobile models from the 2014/2015 are based on the cities of Amsterdam, Utrecht 320 

and Maastricht. The cities of Utrecht and Maastricht do not have a port area and are smaller cities 321 

with less traffic than Amsterdam and Rotterdam. UFP models from both time periods were used to 322 

predict concentration levels at 1500 random addresses in Amsterdam, Maastricht and Utrecht. These 323 

predictions were highly correlated as shown in figure 4 (R2=0.80). Predictions made by the two short-324 

term stationary models were also highly correlated as shown in figure B.4 (R2=0.60), but less than the 325 

mobile models. 326 

The mobile UFP model from 2013 had a lower intercept and included natural area in a 5000m buffer, 327 

resulting in the observed deviance in absolute concentration predictions at the lower end of the 328 

concentration range. Most of these sites are located in Maastricht, a less urban area compared to 329 

Rotterdam and Amsterdam.  330 

 331 
Figure 4. Mobile predictions (particles/cm

3
) based on 2013 measurement campaign versus mobile predictions 332 

based on measurement presented in this paper (2014/2015), on 1500 random addresses in Amsterdam, Utrecht 333 

and Maastricht. 334 



To exclude the influence of geographical differences, mobile LUR models were also created for the 335 

city of Amsterdam only. These LUR models are shown in tables B.2 and B.3. Correlation between the 336 

2013 and 2014/2015 mobile models is less than models with all cities included (R2=0.51; figure B.5). 337 

Random variability due to developing models on a smaller number of sites may have contributed to 338 

the lower correlation between the two mobile models. 339 

 340 

4. Discussion 341 

Our novel analyses demonstrate many scenarios in which LUR model predictions for UFP are robust 342 

from data collection design and sampling temporal range. Models based upon mobile and short-term 343 

stationary monitoring provided highly correlated predictions of UFP concentrations at 1500 randomly 344 

selected addresses in three Dutch cities (R2 =0.64). Mobile and short-term models explained 57% and 345 

46% of the variability in measured average home outdoor UFP concentrations at 42 external sites in 346 

Amsterdam and Utrecht. We found a high correlation (R2=0.80) between predicted UFP levels based 347 

on the mobile LUR model and a previously developed mobile LUR model (with another spatial extent 348 

and in a different year) at 1500 random addresses in Amsterdam, Maastricht and Utrecht. Predicted 349 

UFP concentrations made by the mobile models were on average 30% higher than predicted by the 350 

stationary models. Distance to the road and land-use/traffic predictors did not explain the 351 

overprediction. 352 

In contrast, mobile model predictions for BC correlated only moderately with those of short-term 353 

stationary BC models. Mobile BC models did not explain home outdoor BC concentrations at the 42 354 

external sites well (R2 = 14%).  355 

4.1 Mobile versus Short-term Stationary Monitoring models for UFP 356 
Our mobile UFP LUR model explains 36% of the spatial variability of the short-term stationary 357 

measurements, which is more than two-fold the explained variance of the mobile measurements 358 

where the model is based on (15%). Similar results were found in the 2013 campaign18, where the 359 

mobile LUR model was able to explain 26% of the short-term stationary measurements, two times 360 

higher than the explained variability of the mobile measurements the mobile model was based on 361 

(13%). In this study we were additionally able to compare mobile and short-term models to external 362 

measurements with longer averaging periods (3x24 hours) and found that UFP mobile models 363 

predicted an even larger fraction of the variability of these longer term measurements (R2=0.57). This 364 

analysis further supports the assertion that despite the low R2 of mobile UFP LUR models they 365 

provide robust exposure estimates at residential addresses. 366 

The low model R2 has been attributed to the high temporal variability in measured concentrations of 367 

very short duration per site18,19. Temporal predictors are purposely left out model development as 368 

we set out to develop a spatial model. We have now documented in two combined short-term and 369 

mobile monitoring studies that the explained variance of measurements increases when the model is 370 

compared with measurements with longer duration18,19,22. This is due to the significant decrease in 371 

total variance from temporal averaging. LUR models based on longer term UFP monitoring 372 

campaigns34–38 explained spatial variability of their own measured UFP concentrations a lot better 373 

than our study, with R2 values ranging from 0.48 to 0.89. In the current study, an increase in the 374 

averaging time of measurements led to an increase of the ability of mobile models to predict these 375 

measurements; from 15% to mobile measurements (median 25sec), 36% to short-term stationary 376 



measurements (3x30min) and 57% to home outdoor measurements (3x24h). Consistently, studies 377 

that have repeated mobile monitoring at the same road segment more often than in our studies 378 

have reported fairly high model and validation R2 values10,12,15. 379 

For the 2014/2015 campaign, the model predictions of the mobile and short-term model at external 380 

addresses (n=1500) were fairly highly correlated (R2=0.64), replicating, albeit somewhat lower, our 381 

previous observation based on the 2013 monitoring campaign (R2=0.92). The lower correlation in our 382 

current work could be due to the larger and more diverse study area. The mobile model was slightly 383 

better than the short-term stationary model in predicting concentration levels on the home outdoor 384 

sites (57 versus 46%). For the 2013 campaign, mobile and short-term stationary models explained 51 385 

and 55% of the concentration variability at the home outdoor sites (Figure B.1). We conclude that 386 

mobile and short-term stationary monitoring lead to very similar predictions of spatial exposure 387 

contrasts, with no consistent difference in validity.  388 

4.2 Mobile versus Short-term Stationary Monitoring models for BC  389 
The moderate agreement between mobile and short-term stationary model predictions for black 390 

carbon in the current study (R2=0.37) is inconsistent with our previous evaluation, based on a mobile 391 

monitoring campaign in 2013 (R2=0.88) 18. When we compared the mobile model predictions with the 392 

home outdoor measurements from 2014/2015, we poorly explained the variability in monitored 393 

concentrations (14%).  The predicted levels on these sites based on the mobile model from 2013 was 394 

also poorly correlated with the measurements (R2=0.17). The short-term stationary models in both 395 

campaigns explained more variation of the home outdoor sites (R2=0.38 and 0.28; Figure C.2 and 396 

C.3). 397 

The BC measurement device used in the 2013 and 2014/15 campaign had a temporal resolution of 398 

one minute, which was later adjusted to two or three minutes because of noise of the instrument. 399 

This is too long to detect the high spatial variation of BC, especially within city limits. The derived 400 

mobile LUR model has a relatively large estimate for residential land area in a 5000m buffer, 401 

probably representing the difference between cities. Variation within cities could not be sufficiently 402 

assessed by our BC instrument using mobile monitoring by car driving. In contrast, short-term 403 

stationary monitoring can be performed with a Micro-Aethalometer as each measurement consist of 404 

30 1-minute averages. The Micro-Aethalometer may be useful in mobile monitoring in much higher 405 

pollution environments and in mobile monitoring campaigns using slow moving platforms such as 406 

bicycles and backpacks (whilst walking). Lonati et al39 used bicycles to measure BC in a city in 407 

Northern Italy and found that the 1-min time resolution of the Micro-Aethalometer always exceeded 408 

the suggested attenuation threshold. Hankey and Marshall10 also needed at least 1min averages to 409 

smooth the noise of the instrument and reported moderate model R2 for cycling-based mobile 410 

monitoring for BC (35-49%), though lower than for particle number (58-61%).  411 

4.3 Over-prediction of mobile UFP models 412 
The mobile UFP LUR models generated higher predicted concentrations than short-term stationary 413 

models for the same locations. In our previous study, we could not distinguish between 414 

overprediction by the mobile model and under prediction of the short-term model or a combination 415 

of both. In our current study this is corroborated in the comparison of the mobile and short-term at 416 

home outdoor sites for which we had independent measurements available. The mobile but not the 417 

short-term stationary model over predicted home outdoor concentrations. This mostly related to 418 

mobile measurements being taken on-road where concentration levels are likely to be higher than at 419 



roadside residential addresses. Multiple studies have observed sharp UFP and BC gradients in near-420 

road urban environments with gradients similar to what was observed in our previous study1,6,7,24,40–421 
44. However, no studies have measured actual difference between measuring on-road and near the 422 

side of the road. Ragettli et al45 compared measurements of UFP on the sidewalk and at the façade of 423 

buildings and found a difference in concentration levels of about 20%. Kaur et al41 found a difference 424 

between measuring at the edge of the curb side near the road and measuring at the side of the 425 

building. They observed pedestrian exposure whilst walking curb side of about 86.000 particles/cm3, 426 

while an average of about 73.000 particles/cm3 was measured walking along the building side of the 427 

pavement (difference about 13,000 particles/cm3 which amounts to 15%). These relative differences 428 

are in the range of the finding in this paper with concentration differences between on-road and 429 

sidewalk of about 30%. This was also found in the 2013 campaign, suggesting that this number is not 430 

significantly affected by geographical differences within The Netherlands. 431 

In our dataset we also found no correlation between the mobile model overprediction and the 432 

distance of the short-term measurement sites to the road. On top of that, LUR analyses of the delta 433 

(difference between predicted and observed at the short-term measurement site) generated no 434 

interpretable results. One of the reasons for this is probably the lack of accuracy of GIS and GPS of 435 

the measurements when it comes to differences in the range of 5 -20 meters. Short-term stationary 436 

sites were mostly located within 2 to 10m from the edge of the road. Within these distances the 437 

mobile models are not able to scale down concentration levels to residential addresses18. 438 

Furthermore, mobile monitoring campaigns usually do not have short-term stationary measurements 439 

to make adjustments based on distance or LUR analyses. For the use in epidemiology, we suggest to 440 

either perform no corrections at all, as relative ranking are preserved, or use of an empirical 441 

determined factor to scale down mobile LUR model predictions, based on study-area specific data. 442 

A rationale for no adjustment is that other factors can influence the over- or under-prediction of 443 

mobile LUR models. All our measurements are sampled between 9:15AM and 4:00PM, excluding 444 

rush hour. This could lead to some underestimation of our LUR models. The exclusion of night-time 445 

period could in contrast lead to an over-prediction of 24hour average concentrations. Other studies 446 

only sampled during rush hour10,11,14 or only sampled in the summer season10,11,15, which respectively 447 

would cause some overestimation and underestimation1,46 of concentration levels. As such the 448 

observed difference here between mobile and short-term stationary LUR models may well be within 449 

the error of other limitations in these campaigns. 450 

4.5 Robustness of mobile LUR Models 451 
We compared LUR models developed from two different monitoring campaigns (including different 452 

cities) and found highly correlated predicted concentration levels at 1500 random addresses, 453 

providing further support for the robustness of LUR models based upon mobile monitoring data. The 454 

comparability of the two models is consistent with previous observations of stable spatial contrast of 455 

air pollution over short periods (here 1-2 years), and a previous analysis of the 2013 campaign 456 

suggesting no difference between the combined city model and city-specific models19. In comparable 457 

Dutch cities, similar predictor variables (mainly small-scale traffic), explain a major fraction of UFP 458 

spatial variability.  459 

In general, models from the 2013 and this campaign included similar predictors, which was also 460 

found by Hatzopoulou et al.47 reviewing LUR models of several Canadian cities. Both Dutch models 461 

include a large scale population density buffer, the length of major roads in a small buffer, the area 462 



of natural land, the presence of a nearby port and traffic intensity variables. The area of airports was 463 

included in the model from 2013, but not in the 2014/2015 LUR model. It could be that the area of 464 

airports was not included our LUR model because of limited measurements near airports (only 465 

Amsterdam in the 2014/2015 campaign). 466 

4.6 Advantages and limitations of mobile monitoring 467 
Mobile monitoring is a cost-effective method to generate LUR models, as a wide range of conditions 468 

can be captured in a limited amount of time and with a limited amount of instruments30,46. A high 469 

spatial density of measurements can be obtained, sampling more sites which are more 470 

representative for people’s exposures such as near-intersections and close proximity to traffic lights. 471 

Conversely, mobile monitoring decreases sampling time significantly opposed to stationary 472 

measurement campaigns leading to substantial uncertainties in concentration fields30. This is 473 

reflected in our study in very low R2 values for mobile models explaining the spatial variability in 474 

mobile measurements. For LUR model development, however, the short sampling time per road 475 

segment is likely counterbalanced by the increased spatial variability47,48, which explains the 476 

consistent selection of explanatory variables and good external dataset prediction. 477 

Several mobile monitoring studies suggest to use a minimum temporal resolution12,49,50 or minimum 478 

number of visits11 to adequately assign average concentrations per road segment. Hatzopoulou et 479 

al47 looked into the amount of visits needed per road segment to characterise its average 480 

concentration and found an increase in model R2 with an increasing number of visits. 20% of the road 481 

segments in our data set consist of 10 seconds or less. Excluding these road segments from model 482 

development increases our model R2 to 0.20 (results not shown). This model however does not 483 

improve predictions to short-term stationary measurements (R2 remains 0.36) and home outdoor 484 

measurements (R2 of 0.56 compared to 0.57 for all road segments).  485 

Of note, LUR models were developed using linear regression and adjusted by adding an AR-1 term to 486 

the model to correct for spatial autocorrelation. The AR-1 term assumes regular time and space 487 

intervals and that the autocorrelation remains constant over time. This method is unlikely to be 488 

optimal, but is considered the best option in several mobile monitoring campaigns11,14,51. Other 489 

mobile campaigns include a Local Indicator of Spatial Analysis (LISA)10, extend the averaging period52 490 

or disregard the issue13. Performing sensitivity analyses on the autoregressive models did not yield 491 

significant different results from the original models (table B.1) and also in our previous campaign18 492 

and in a study by Weichenthal et al14. 493 

5. Conclusions 494 

Models based upon mobile and short-term stationary monitoring provided fairly high correlated 495 

predictions of UFP concentrations at 1500 randomly selected addresses in three Dutch cities. Mobile 496 

and short-term models explained 57% and 46% of the variability in measured average home outdoor 497 

UFP concentrations at external sites. In contrast, mobile BC models did not explain home outdoor BC 498 

concentrations at the external sites well (R2 = 14%). We found a high correlation (R2=0.80) between 499 

predicted UFP levels based on the mobile LUR model and a previously developed mobile LUR model 500 

(with another spatial extent and in a different year) at 1500 random addresses. Because of on-road 501 

measurements predicted UFP concentrations made by the mobile models were on average 30% 502 

higher than predicted by the stationary models. Distance to the road and land-use / traffic predictors 503 

did not explain the overprediction. Overall, our study supports that robust LUR models for UFP can 504 

be developed based on mobile monitoring. 505 



Supplement Information 506 

The Supporting information is divided into three subsections. Appendix A contains general 507 

information concerning both UFP and BC. Appendix B contains supporting information about UFP 508 

and Appendix C about BC. 509 
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Appendix  A: General Information 639 

 640 

Table A.1: Overview of different data sets. 641 

Data set Year Location Number Resolution Instruments 

Mobile 
Measurements  

2014/2015 
Amsterdam, 
Maastricht and 
Utrecht 

5236 Road 
Segments 

~25seconds 
CPC ( UFP) and 
Aethalometer (BC) 

2013 
Amsterdam and 
Rotterdam 

2964 Road 
Segments 

~20seconds 
CPC ( UFP) and 
Aethalometer (BC) 

Short-Term 
Stationary 
Measurements 

2014/2015 
Amsterdam, 
Maastricht and 
Utrecht 

240 Sites 3 times 30 minutes 
CPC ( UFP) and 
Aethalometer (BC) 

Randomly selected 
addresses  

/ 
Amsterdam, 
Maastricht and 
Utrecht 

1500 Addresses / / 

Home Outdoor 
Measurements 

2014/2015 
Amsterdam and 
Utrecht 
 

42 Homes 3 times 24 hours 
MiniDisc (UFP) and 
Harvard Impactors (BC) 



Table A.2. Spatial predictor variables with units, a priori defined directions of effect and buffer sizes in the mobile and short-term stationary data sets. 642 
Predictor variable 

Units 
Direction of 

effect 
Buffer 

(m) 
Mobile Short-term Stationary 

    10th percentile Mean 90th Percentile 10th percentile Mean 90th Percentile 

Industry area 

m2 + 

100 0 1400 0 0 440 0 

300 0 13633 37122 0 7237 6463 

500 0 41895 166610 0 29522 110419 

1000 0 197751 711267 0 174742 619476 

5000 2305345 5591752 8349138 1931709 5353372 8062690 

Port area 

m2 + 

100 0 247 0 0 208 0 

300 0 2473 0 0 1786 0 

500 0 8142 0 0 7167 0 

1000 0 45285 0 0 52363 0 

5000 0 2428278 9225706 0 2116359 8617504 

Airport area m
2
 + 5000 0 136650 0 0 25216 783 

Urban green area 

m2 - 

100 0 490 0 0 963 0 

300 0 7711 22125 0 10843 37904 

500 0 32633 132893 0 37932 152378 

1000 0 190110 579390 0 192426 551366 

5000 1372895 5233285 9714816 1122221 4590130 9281079 

Natural and forested areas 

m2 - 

100 0 222 0 0 167 0 

300 0 2103 0 0 1588 0 

500 0 7244 0 0 6077 0 

1000 0 52377 165299 0 51926 144940 

5000 1334268 4944915 8182331 1328510 5172157 8159990 

Residential land area 

m2 + 

100 0 26434 31375 0 25954 31375 

300 66208 226402 282618 47422 222740 282618 

500 231301 593328 785191 189582 579130 785191 

1000 842139 2082317 3050349 518003 1967973 3005396 

5000 15002050 28689475 46595685 11680371 27225930 46124341 

Population density 

n + 

100 7 245 524 15 270 561 

300 311 2117 4370 480 2096 4429 

500 1236 5469 11421 956 5208 10991 

1000 4805 19270 42504 2533 17452 39812 

5000 85535 251242 539468 71083 227169 531610 

Household density 

n + 

100 3 132 292 6 142 324 

300 144 1136 2476 200 1111 2553 

500 563 2940 6507 453 2773 6309 

1000 2079 10416 24315 1012 9380 22482 

5000 39485 134927 307588 32832 121927 303001 

Traffic intensity on nearest road Veh.day-1 +  82 8656 25785 30 4090 14943 

Traffic intensity on nearest major road Veh.day-1 +  5736 18232 36470 5649 18579 34240 



Heavy-duty traffic intensity on nearest road Veh.day
-1

 +  0 324 1005 0 125 420 

Heavy-duty traffic intensity on nearest major road Veh.day-1 +  67 982 1950 48 1206 1769 

Road length of all roads 

m + 

50 102 258 404 98 190 308 

100 488 838 1200 363 716 1059 

300 3997 6359 8494 3180 5925 8209 

500 9994 16603 21857 7734 15605 21532 

1000 33179 60248 80412 27773 55926 78365 

Road length of all major roads 

m + 

50 0 79 203 0 42 174 

100 0 194 507 0 107 390 

300 0 1030 2259 0 664 1760 

500 0 2600 4951 0 2080 4164 

1000 3161 9707 15328 2165 8471 14235 

Traffic intensity on all roads 

(sum of (traffic intensity * length of all segments)) Veh.day-1m + 

50 40082 1257727 3400359 7963 757087 2207469 

100 185957 3417972 8691268 77072 2255473 5463763 

300 3136239 22142804 47797106 1315772 15681335 36067592 

500 11762571 58068646 120273812 5579975 46420718 98239045 

1000 63847576 226759175 452445437 31635299 196221848 417062321 

Traffic intensity on all major roads 

 (sum of (traffic intensity* length of all segments)) 

 

 

Veh.day-1m 

 
 

+ 

50 0 1127175 3336962 0 688087 2185933 

100 0 2998942 8304429 0 1942440 4963848 

300 0 18940815 44304127 0 12729584 31697479 

500 4808393 49735352 108364418 0 38751720 89534363 

1000 44458796 196518241 410822257 18085365 168852113 377180297 

Heavy-duty traffic intensity on all roads 

(sum of (heavy-duty traffic intensity* length of all 
segments)) 

Veh.day-1m + 50 440 54021 141389 0 36679 92230 

100 3122 155742 378676 568 131698 213495 

300 72173 1121670 2637212 41345 760615 1541019 

500 328397 3078547 7798998 157767 2233684 5463944 

1000 2075563 13058286 26737180 1077166 10937816 23631745 

Heavy-duty traffic intensity on major roads 

(sum of (heavy-duty traffic intensity*length of all 
segments) 

Veh.day-1m + 

50 0 48165 134636 0 33903 92230 

100 0 137648 357616 0 120977 210302 

300 0 988569 2470260 0 651430 1335757 

500 106797 2727455 7255375 0 1931699 5094488 

1000 1133803 11678977 25328256 624627 9707896 21738224 

Inverse Distance to nearest road 
a
 m-1 +  na na na 0.073 0.488 0.756 

Inverse Distance to nearest major road 
a
 m-1 +  na na na 0.002 0.065 0.135 

a Variables were not used for mobile model development, due to values being zero. 643 



Table A.3: Distribution of UFP and BC in mobile and short-term stationary data set. 644 

Pollutant Type of 
Measurements 

No. of 
observations 

Mean 10
th

 
percentile 

Median 90
th

 
percentile 

UFP (in 

particles /cm3) 
Mobile  5236 18623 6850 14013 35512 

Stationary  240 12910 6453 11062 20663 

BC (in µg/m3) 
Mobile  5186 3.32 1.07 2.29 6.40 

Stationary  240 1.73 0.85 1.50 2.94 

 645 

Figure A.1: Distribution of UFP and BC in mobile and short-term stationary data set. 646 

 647 

648 

a 

b 



Appendix  B: Ultrafine Particles 649 

Table B.1. UFP Land-Use Regression Models based upon Mobile Measurements with and without AR-1 term and local exhaust plumes. 650 

Variable 
Original (With AR-1 

term and with peaks) 
With peaks, 

Without AR-1 term 
With AR1- term, 
Without Peaks 

Without AR-1 term 
and without peaks 

Fixed City effect model  
(Without AR-1 term) 

Intercept 8072 (968) 9002 (578) 8296 (596) 8603 (413) 

Amsterdam 7858 (1060) 

Maastricht 8950 (658) 

Utrecht 8719 (641) 

Population Density:      

Residential Land Area in a 5000m 
buffer 

7763 (1155) a 5591 (703) 4493 (710) 4182 (504) 5955 (758) 

Traffic:      

Traffic Intensity on the Nearest Road 2244 (756) 3727 (656) 2755 (504) 2876 (462) 3760 (656) 

Heavy Traffic Intensity on the Nearest 
Road 

989 (536) 1790 (499) 878 (381) 952 (355) 1754 (501) 

Major Road Length in a 100m buffer 4588 (524) 5057 (465) 1727 (476) 2445 (473) 5095 (469) 

Major Road Length in a 300m buffer   2069 (587) 1656 (533)  

Land Use:      

Port Area in a 5000m buffer 3457 (995) 3882 (586) 4195 (594) 4525 (415) 4599 (812) 

Urban Green Land in a 500m buffer -1001 (494) -1018 (354)   -926 (361) 

Urban Green Land in a 1000m buffer    -803 (306)  

      

Number Road Segments used for model 
development 

5236 5236 5164 5164 5236 

Model R
2
 0.15

 b 0.15 0.18 b 0.19 / 

Pearson Correlation with Original 
Model on 1500 Random Addresses 

/ 0.99 0.97 0.98 / 

a 
Regression slopes and standard error (between brackets), multiplied by the difference between 10

th
 and 90

th
 percentile for all predictors to allow comparison of the effect of predictors with 651 

different units and distribution on measured concentrations. Predictions in particles/cm
3
. 652 

b
 R

2
 of model without AR-1 term.653 



Table B.2. UFP Land-Use Regression Models from the 2014-2015 campaign based upon Mobile 654 

Measurements. 655 

Variable Combined Amsterdam 

Intercept 8072 (968) 4053 (3015) 

   

Population Density:   

Residential Land Area in a 5000m buffer 7763 (1155)
a
 8528 (1873) 

   

Traffic:   

Traffic Intensity on the Nearest Road 2957 (740) 2817 (1141) 

Heavy Traffic Intensity on the Nearest 
Road 

989 (536)  

Heavy Traffic Intensity on the Nearest 
Major Road 

 1156 (633) 

Traffic Intensity in a 100m buffer   

Major Road Length in a 100m buffer 4588 (524) 3100 (1034) 

   

Land Use:   

Port Area in a 5000m buffer 3457 (995) 4911 (1993) 

Urban Green Land in a 500m buffer -1001 (494)  

   

Number Road Segments used for model 
development 

5,236 1,991 

R
2 

of model compared to short-term 
stationary measurements 

0.36  0.21 

a 
Regression slopes and standard error (between brackets), multiplied by the difference between 10

th
 and 90

th
 percentile for 656 

all predictors to allow comparison of the effect of predictors with different units and distribution on measured 657 
concentrations. Predictions in particles/cm

3
. 658 



Table B.3. UFP Land-Use Regression Models from the 2013 campaign based upon Mobile 659 
Measurements. 660 
 661 
Variable Combined Amsterdam 

Intercept 5656 (2675) -1254 (2974) 

   

Population Density:   

Population density in a 5000m buffer 8064 (1947)
 a

 8323 (2865) 

   

Traffic:   

Traffic Intensity on Major Roads in a 100m buffer 1928 (1095) 5722 (1641) 

Traffic Intensity in a 500m buffer 2917 (1514)  

Traffic Intensity in a 1000m buffer  7694 (2919) 

Major Road Length in a 50m buffer 6868 (1071) 3884 (1567) 

   

Land Use:   

Port Area in a 500m buffer  2102 (633) 

Port Area in a 1000m buffer 2499 (1248)  

Airport Area in a 5000m buffer 4669 (1185)  

Natural Land in a 5000m buffer -2557 (1357)  

   

Number Road Segments used for model 
development 

2964 1427 

R
2 

of model 0.13 0.18 
a 

Regression slopes and standard error (between brackets), multiplied by the difference between 10
th

 and 90
th

 percentile for 662 
all predictors to allow comparison of the effect of predictors with different units and distribution on measured 663 
concentrations. Predictions in particles/cm

3
. 664 

b
 R

2
 of short-term stationary model is between brackets.665 



Figure B.1. Predicted concentration levels at home outdoor sites (n=42) based on mobile UFP 2013 666 
model (a) and short-term stationary UFP 2013 model (b) compared to 3 x 24h measurements from 667 
2014/2015. 668 

 669 

 670 
UFP levels in particles/cm

3 671 
 672 

a 

b 



Figure B.2. Bias of predicted UFP counts on the short-term stationary sites (a) and home outdoor 673 

24h sites (b) vs. distance of the measurement site to the nearest road. 674 

 675 

  676 
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Figure B.3. Mobile UFP predictions compared to short-term stationary UFP predictions on 1500 678 

random addresses, with Bland Altman plots and for both measurement campaigns. 679 

2013 Campaign: 680 

  681 

  682 

   683 

 684 

 685 

 686 

 687 



Figure B.3. Continued. 688 

2014/2015 Campaign: 689 

  690 

  691 

  692 

 693 

 694 



Figure B.4. Short-Term Stationary UFP predictions based on measurements from the 2013 695 
campaign versus Short-Term Stationary predictions based on the measurements in 2014/2015. 696 
 697 

 698 
Predictions in particles/cm

3
.699 



Figure B.5. Comparison of predicted UFP counts based on mobile LUR models in 2013 and 700 
2014/2015 in Amsterdam. 701 
 702 

  703 
Predictions in particles/cm

3
. 704 



Appendix  C:  Black Carbon 705 

 706 

Table C.1. Mobile and Short-Term Stationary BC Models. 707 

 BC (in µg/m3) 

Variable Short-Term  Mobile AR-1 

Intercept 1.20 (0.07) 1.00 (0.28) 

   

Population Density:   

Household density in a 1000m buffer 0.33 (0.14)  

Residential land area in a 5000m buffer  2.43 (0.29) 

   

Traffic:   

Traffic intensity on the nearest road 0.29 (0.12) 0.36 (0.10) 

Traffic intensity in a 50m buffer 0.63 (0.12)  

Length of major roads in a 100m buffer 0.37 (0.13) 0.27 (0.10) 

   

Land Use:   

Urban green in a 1000m buffer  -0.35 (0.16) 

   

R
2
 of model 0.44 0.10 

b
 

Number sites used for model development 240 5,169 

 
a 

Regression slopes and standard error (between brackets), multiplied by the difference between 10
th

 and 90
th

 708 
percentile for all predictors. 

b
 R

2
 of model without AR-1 term.709 



Figure C.1. (a) Predicted concentration levels at stationary sites based on mobile LUR model 710 
compared to stationary measurements. (b) Comparison of predicted concentration levels based on 711 
mobile and stationary LUR models at 1,500 random addresses in Amsterdam, Utrecht and 712 
Maastricht. 713 

 714 
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3
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Figure C.2. Predicted concentration levels at home outdoor sites (n=42) based on mobile models (a) 716 
and short-term stationary models (b) compared to 3 x 24h measurements.  717 

 718 
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Figure C.3. Predicted concentration levels at home outdoor sites (n=42) based on mobile BC 2013 720 
model (a) and short-term stationary BC 2013 model (b) compared to 3 x 24h measurements from 721 
2014/2015.  722 
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