127 research outputs found
Knock-limited power outputs from a CFR engine using internal coolants III : four alkyl amines, three alkanolamines six amides, and eight heterocyclic compounds
A network-based target overlap score for characterizing drug combinations: High correlation with cancer clinical trial results
Drug combinations are highly efficient in systemic treatment of complex multigene diseases such as cancer, diabetes, arthritis and hypertension. Most currently used combinations were found in empirical ways, which limits the speed of discovery for new and more effective combinations. Therefore, there is a substantial need for efficient and fast computational methods. Here, we present a principle that is based on the assumption that perturbations generated by multiple pharmaceutical agents propagate through an interaction network and can cause unexpected amplification at targets not immediately affected by the original drugs. In order to capture this phenomenon, we introduce a novel Target Overlap Score (TOS) that is defined for two pharmaceutical agents as the number of jointly perturbed targets divided by the number of all targets potentially affected by the two agents. We show that this measure is correlated with the known effects of beneficial and deleterious drug combinations taken from the DCDB, TTD and Drugs.com databases. We demonstrate the utility of TOS by correlating the score to the outcome of recent clinical trials evaluating trastuzumab, an effective anticancer agent utilized in combination with anthracycline- and taxane-based systemic chemotherapy in HER2-receptor (erb-b2 receptor tyrosine kinase 2) positive breast cancer. © 2015 Ligeti et al
Albatrellus confluens (Alb. & Schwein.) Kotl. & Pouz.: natural fungal compounds and synthetic derivatives with in vitro anthelmintic activities and antiproliferative effects against two human cancer cell lines
Neglected tropical diseases affect the world's poorest populations with soil-transmitted helminthiasis and schistosomiasis being among the most prevalent ones. Mass drug administration is currently the most important control measure, but the use of the few available drugs is giving rise to increased resistance of the parasites to the drugs. Different approaches are needed to come up with new therapeutic agents against these helminths. Fungi are a source of secondary metabolites, but most fungi remain largely uninvestigated as anthelmintics. In this report, the anthelmintic activity of Albatrellus confluens against Caenorhabditis elegans was investigated using bio-assay guided isolation. Grifolin (1) and neogrifolin (2) were identified as responsible for the anthelmintic activity. Derivatives 4-6 were synthesized to investigate the effect of varying the prenyl chain length on anthelmintic activity. The isolated compounds 1 and 2 and synthetic derivatives 4-6, as well as their educts 7-10, were tested against Schistosoma mansoni (adult and newly transformed schistosomula), Strongyloides ratti, Heligmosomoides polygyrus, Necator americanus, and Ancylostoma ceylanicum. Prenyl-2-orcinol (4) and geranylgeranyl-2-orcinol (6) showed promising activity against newly transformed schistosomula. The compounds 1, 2, 4, 5, and 6 were also screened for antiproliferative or cytotoxic activity against two human cancer lines, viz. prostate adenocarcinoma cells (PC-3) and colorectal adenocarcinoma cells (HT-29). Compound 6 was determined to be the most effective against both cell lines with IC50 values of 16.1 microM in PC-3 prostate cells and 33.7 microM in HT-29 colorectal cells
Structural elucidation of the triethylammonium betaine of squaric acid
Betaines of squaric acid have gained research interest because of their structural and spectral properties. We elucidated the crystal and molecular structure of the triethylammonium betaine of squaric acid (1) by X-ray crystallography, IR, and NMR spectroscopy augmented by Hirshfeld surface analysis and DFT calculations. The crystal structure determination using Hirshfeld atom refinement reveals that the resonance hybrid structure with partial enolate character of the two lateral squaric acid C=O groups describes 1 best. The solid-state supramolecular structure features weak intermolecular C−H···O hydrogen bonds. The number of C=O bands in the IR spectrum in the solid-state is consistent with local C2v symmetry of the squaric acid residue in 1. The 13C NMR signals of this group in solution were assigned based on 2D NMR experiments and computational prediction using the Gauge-Independent Atom Orbital (GIAO) method. The present study provides the first structural characterization of a betaine of squaric acid containing a four-coordinate nitrogen atom directly attached to the four-membered ring
Anthelmintic activity and cytotoxic effects of compounds isolated from the fruits of Ozoroa insignis del. (Anacardiaceae)
Ozoroa insignis Del. is an ethnobotanical plant widely used in traditional medicine for various ailments, including schistosomiasis, tapeworm, and hookworm infections. From the so far not investigated fruits of Ozoroa insignis, the anthelmintic principles could be isolated through bioassay-guided isolation using Caenorhabditis elegans and identified by NMR spectroscopic analysis and mass spectrometric studies. Isolated 6-[8(Z)-pentadecenyl] anacardic (1), 6-[10(Z)-heptadecenyl] anacardic acid (2), and 3-[7(Z)-pentadecenyl] phenol (3) were evaluated against the 5 parasitic organisms Schistosoma mansoni (adult and newly transformed schistosomula), Strongyloides ratti, Heligmosomoides polygyrus, Necator americanus, and Ancylostoma ceylanicum, which mainly infect humans and other mammals. Compounds 1-3 showed good activity against Schistosoma mansoni, with compound 1 showing the best activity against newly transformed schistosomula with 50% activity at 1microM. The isolated compounds were also evaluated for their cytotoxic properties against PC-3 (human prostate adenocarcinoma) and HT-29 (human colorectal adenocarcinoma) cell lines, whereby compounds 2 and 3 showed antiproliferative activity in both cancer cell lines, while compound 1 exhibited antiproliferative activity only on PC-3 cells. With an IC50 value of 43.2 microM, compound 3 was found to be the most active of the 3 investigated compounds
Sucrose in the concentrated solution or the supercooled “state” : a review of caramelisation reactions and physical behaviour
Sucrose is probably one of the most studied molecules by food scientists, since it plays an important role as an ingredient or preserving agent in many formulations and technological processes. When sucrose is present in a product with a concentration near or greater than the saturation point—i.e. in the supercooled state—it possesses high potentialities for the food industry in areas as different as pastry industry, dairy and frozen desserts or films and coatings production. This paper presents a review on critical issues and research on highly concentrated sucrose solutions—mainly, on sucrose thermal degradation and relaxation behaviour in such solutions. The reviewed works allow identifying several issues with great potential for contributing to significant advances in Food Science and Technology.Authors are grateful for the valuable discussions with Teresa S. Brandao and Rosiane Lopes da Cunha during this research. Author M. A. C. Quintas acknowledges the financial support of her research by FCT grant SFRH/BPD/41715/2007
Predicting Inactive Conformations of Protein Kinases Using Active Structures: Conformational Selection of Type-II Inhibitors
Protein kinases have been found to possess two characteristic conformations in their activation-loops: the active DFG-in conformation and the inactive DFG-out conformation. Recently, it has been very interesting to develop type-II inhibitors which target the DFG-out conformation and are more specific than the type-I inhibitors binding to the active DFG-in conformation. However, solving crystal structures of kinases with the DFG-out conformation remains a challenge, and this seriously hampers the application of the structure-based approaches in development of novel type-II inhibitors. To overcome this limitation, here we present a computational approach for predicting the DFG-out inactive conformation using the DFG-in active structures, and develop related conformational selection protocols for the uses of the predicted DFG-out models in the binding pose prediction and virtual screening of type-II ligands. With the DFG-out models, we predicted the binding poses for known type-II inhibitors, and the results were found in good agreement with the X-ray crystal structures. We also tested the abilities of the DFG-out models to recognize their specific type-II inhibitors by screening a database of small molecules. The AUC (area under curve) results indicated that the predicted DFG-out models were selective toward their specific type-II inhibitors. Therefore, the computational approach and protocols presented in this study are very promising for the structure-based design and screening of novel type-II kinase inhibitors
Impedance Responses Reveal β2-Adrenergic Receptor Signaling Pluridimensionality and Allow Classification of Ligands with Distinct Signaling Profiles
The discovery that drugs targeting a single G protein-coupled receptor (GPCR) can differentially modulate distinct subsets of the receptor signaling repertoire has created a challenge for drug discovery at these important therapeutic targets. Here, we demonstrate that a single label-free assay based on cellular impedance provides a real-time integration of multiple signaling events engaged upon GPCR activation. Stimulation of the β2-adrenergic receptor (β2AR) in living cells with the prototypical agonist isoproterenol generated a complex, multi-featured impedance response over time. Selective pharmacological inhibition of specific arms of the β2AR signaling network revealed the differential contribution of Gs-, Gi- and Gβγ-dependent signaling events, including activation of the canonical cAMP and ERK1/2 pathways, to specific components of the impedance response. Further dissection revealed the essential role of intracellular Ca2+ in the impedance response and led to the discovery of a novel β2AR-promoted Ca2+ mobilization event. Recognizing that impedance responses provide an integrative assessment of ligand activity, we screened a collection of β-adrenergic ligands to determine if differences in the signaling repertoire engaged by compounds would lead to distinct impedance signatures. An unsupervised clustering analysis of the impedance responses revealed the existence of 5 distinct compound classes, revealing a richer signaling texture than previously recognized for this receptor. Taken together, these data indicate that the pluridimensionality of GPCR signaling can be captured using integrative approaches to provide a comprehensive readout of drug activity
A Mapping of Drug Space from the Viewpoint of Small Molecule Metabolism
Small molecule drugs target many core metabolic enzymes in humans and pathogens,
often mimicking endogenous ligands. The effects may be therapeutic or toxic, but
are frequently unexpected. A large-scale mapping of the intersection between
drugs and metabolism is needed to better guide drug discovery. To map the
intersection between drugs and metabolism, we have grouped drugs and metabolites
by their associated targets and enzymes using ligand-based set signatures
created to quantify their degree of similarity in chemical space. The results
reveal the chemical space that has been explored for metabolic targets, where
successful drugs have been found, and what novel territory remains. To aid other
researchers in their drug discovery efforts, we have created an online resource
of interactive maps linking drugs to metabolism. These maps predict the
“effect space” comprising likely target enzymes for each of
the 246 MDDR drug classes in humans. The online resource also provides
species-specific interactive drug-metabolism maps for each of the 385 model
organisms and pathogens in the BioCyc database collection. Chemical similarity
links between drugs and metabolites predict potential toxicity, suggest routes
of metabolism, and reveal drug polypharmacology. The metabolic maps enable
interactive navigation of the vast biological data on potential metabolic drug
targets and the drug chemistry currently available to prosecute those targets.
Thus, this work provides a large-scale approach to ligand-based prediction of
drug action in small molecule metabolism
Molecular Basis of Ligand Dissociation in β-Adrenergic Receptors
The important and diverse biological functions of β-adrenergic receptors (βARs) have promoted the search for compounds to stimulate or inhibit their activity. In this regard, unraveling the molecular basis of ligand binding/unbinding events is essential to understand the pharmacological properties of these G protein-coupled receptors. In this study, we use the steered molecular dynamics simulation method to describe, in atomic detail, the unbinding process of two inverse agonists, which have been recently co-crystallized with β1 and β2ARs subtypes, along four different channels. Our results indicate that this type of compounds likely accesses the orthosteric binding site of βARs from the extracellular water environment. Importantly, reconstruction of forces and energies from the simulations of the dissociation process suggests, for the first time, the presence of secondary binding sites located in the extracellular loops 2 and 3 and transmembrane helix 7, where ligands are transiently retained by electrostatic and Van der Waals interactions. Comparison of the residues that form these new transient allosteric binding sites in both βARs subtypes reveals the importance of non-conserved electrostatic interactions as well as conserved aromatic contacts in the early steps of the binding process
- …
