3,767 research outputs found

    Computational challenges of systems biology

    Get PDF
    Progress in the study of biological systems such as the heart, brain, and liver will require computer scientists to work closely with life scientists and mathematicians. Computer science will play a key role in shaping the new discipline of systems biology and addressing the significant computational challenges it poses

    Investigating and promoting trainee science teachers’ conceptual change of the nature of science with digital dialogue games “InterLoc”

    Get PDF
    The purpose of this study is to explore how an online-structured dialogue environment supported (OSDE) collaborative learning about the nature of science among a group of trainee science teachers in the UK. The software used (InterLoc) is a linear text-based tool, designed to support structured argumentation with openers and ‘dialogue moves’. A design-based research approach was used to investigate multiple sessions using InterLoc with 65 trainee science teachers. Five participants who showed differential conceptual change in terms of their Nature of Science (NOS) views were purposively selected and closely followed throughout the study by using key event recall interviews. Initially, the majority of participants held naïve views of NOS. Substantial and favourable changes in these views were evident as a result of the OSDE. An examination of the development of the five participants’ NOS views indicated that the effectiveness of the InterLoc discussions was mediated by cultural, cognitive, and experiential factors. The findings suggest that InterLoc can be effective in promoting reflection and conceptual change.InterLoc was developed by a team led by Andrew Ravenscroft with funding from the UK JISC (Joint Information Systems Committee) 'e-learning tools' programme, and from the JISC Capital Programme

    In situ measurements of density fluctuations and compressibility in silica glass as a function of temperature and thermal history

    Full text link
    In this paper, small-angle X-ray scattering measurements are used to determine the different compressibility contributions, as well as the isothermal compressibility, in thermal equilibrium in silica glasses having different thermal histories. Using two different methods of analysis, in the supercooled liquid and in the glassy state, we obtain respectively the temperature and fictive temperature dependences of the isotheraml compressibility. The values obtained in the glass and supercooled liquid states are very close to each other. They agree with previous determinations of the literature. The compressibility in the glass state slightly decreases with increasing fictive temperature. The relaxational part of the compressibility is also calculated and compared to previous determinations. We discussed the small differences between the different determinations

    Do maternal perceptions of child eating and feeding help to explain the disconnect between reported and observed feeding practices?: A follow-up study

    Get PDF
    Research demonstrates a mismatch between reported and observed maternal feeding practices. This mismatch may be explained by maternal cognitions, attitudes, and motivations relating to dyadic parent–child feeding interactions. These complex constructs may not be apparent during observations nor evidenced in self-report questionnaire. Therefore, the aim of this study was to use a qualitative approach to gain a more nuanced and contextualized understanding of (a) maternal perceptions of children's food intake control; (b) how parent–child mealtime interactions influence maternal feeding practices; and (c) ways in which mothers may promote healthy child eating and weight outcomes. Semistructured telephone interviews were conducted with 23 mothers (M = 38.4 ± 3.7 years of age) of preschool-aged children (M = 3.8 ± 0.6 years of age, 19 were normal weight, 14 were girls), who had previously completed child feeding questionnaire and participated in two home-based mealtime observations, 12 months apart. Interviews were recorded, transcribed, and themes extracted to create the database. Four major themes emerged: (a) Maternal confidence in children's ability to regulate food intake is variable; (b) Implementing strategies for nurturing healthy relationships with food beyond the dining table; (c) Fostering positive mealtime interactions is valued above the content of what children eat; and (d) Situation-specific practices and inconsistencies. Findings indicate that maternal feeding practices are shaped by both parent and child influences, and child feeding is mostly guided by controlling the family food environment, rather than by directly pressuring or restricting their child's eating. Results also highlighted the need for research to consider both parent and child influences on child feeding

    Characterization of the glass transition in vitreous silica by temperature scanning small-angle X-ray scattering

    Full text link
    The temperature dependence of the x-ray scattering in the region below the first sharp diffraction peak was measured for silica glasses with low and high OH content (GE-124 and Corning 7980). Data were obtained upon scanning the temperature at 10, 40 and 80 K/min between 400 K and 1820 K. The measurements resolve, for the first time, the hysteresis between heating and cooling through the glass transition for silica glass, and the data have a better signal to noise ratio than previous light scattering and differential thermal analysis data. For the glass with the higher hydroxyl concentration the glass transition is broader and at a lower temperature. Fits of the data to the Adam-Gibbs-Fulcher equation provide updated kinetic parameters for this very strong glass. The temperature derivative of the observed X-ray scattering matches that of light scattering to within 14%.Comment: EurophysicsLetters, in pres

    Plant virus infections control stomatal development

    Get PDF
    Stomata are important regulators of carbon dioxide uptake and transpirational water loss. They also represent points of vulnerability as bacterial and fungal pathogens utilise this natural opening as an entry portal, and thus have an increasingly complex relationship. Unlike the situation with bacterial and fungal pathogens, we know very little about the role of stomata in viral infection. Here we report findings showing that viral infection influences stomatal development in two susceptible host systems (Nicotiana tabacum with TMV (Tobacco mosaic virus), and Arabidopsis thaliana with TVCV (Turnip vein-clearing virus)), but not in resistant host systems (Nicotiana glutinosa and Chenopodium quinoa with TMV). Virus infected plants had significantly lower stomatal indices in systemic leaves of susceptible systems; N. tabacum 9.8% reduction and A. thaliana 12.3% reduction, but not in the resistant hosts. Stomatal density in systemic leaves was also significantly reduced in virus infected A. thaliana by 19.6% but not in N. tabacum or the resistant systems. In addition, transpiration rate was significantly reduced in TMV infected N. tabacum

    Surveyor batteries Final engineering report

    Get PDF
    Design and performance of Surveyor spacecraft silver-zinc main batter

    Exact Monte Carlo time dynamics in many-body lattice quantum systems

    Full text link
    On the base of a Feynman-Kac--type formula involving Poisson stochastic processes, recently a Monte Carlo algorithm has been introduced, which describes exactly the real- or imaginary-time evolution of many-body lattice quantum systems. We extend this algorithm to the exact simulation of time-dependent correlation functions. The techniques generally employed in Monte Carlo simulations to control fluctuations, namely reconfigurations and importance sampling, are adapted to the present algorithm and their validity is rigorously proved. We complete the analysis by several examples for the hard-core boson Hubbard model and for the Heisenberg model

    Topologically disordered systems at the glass transition

    Get PDF
    The thermodynamic approach to the viscosity and fragility of amorphous oxides was used to determine the topological characteristics of the disordered network-forming systems. Instead of the disordered system of atoms we considered the congruent disordered system of interconnecting bonds. The Gibbs free energy of network-breaking defects (configurons) was found based on available viscosity data. Amorphous silica and germania were used as reference disordered systems for which we found an excellent agreement of calculated and measured glass transition temperatures. We reveal that the Hausdorff dimension of the system of bonds changes from Euclidian three-dimensional below to fractal 2.55 ± 0.05-dimensional geometry above the glass transition temperature
    corecore