On the base of a Feynman-Kac--type formula involving Poisson stochastic
processes, recently a Monte Carlo algorithm has been introduced, which
describes exactly the real- or imaginary-time evolution of many-body lattice
quantum systems. We extend this algorithm to the exact simulation of
time-dependent correlation functions. The techniques generally employed in
Monte Carlo simulations to control fluctuations, namely reconfigurations and
importance sampling, are adapted to the present algorithm and their validity is
rigorously proved. We complete the analysis by several examples for the
hard-core boson Hubbard model and for the Heisenberg model