research

Exact Monte Carlo time dynamics in many-body lattice quantum systems

Abstract

On the base of a Feynman-Kac--type formula involving Poisson stochastic processes, recently a Monte Carlo algorithm has been introduced, which describes exactly the real- or imaginary-time evolution of many-body lattice quantum systems. We extend this algorithm to the exact simulation of time-dependent correlation functions. The techniques generally employed in Monte Carlo simulations to control fluctuations, namely reconfigurations and importance sampling, are adapted to the present algorithm and their validity is rigorously proved. We complete the analysis by several examples for the hard-core boson Hubbard model and for the Heisenberg model

    Similar works