576 research outputs found

    The expansion of cohabitation in Mexico, 1930-2010 : the revenge of history?

    Get PDF
    In this chapter we use census microdata to examine trends in cohabitation in Mexico between 1930 and 2010. The microdata reveal a dramatic increase in cohabitation since the 1990s. By being able to go further back in time than in the other countries examined in this book, we better document the phase that preceded the post-1990 cohabitation boom. This earlier phase was characterized by the systematic reduction in cohabitation in favor of marriages, which results in an overall U-shaped evolution of cohabitation for the entire period between 1930 and 2010. Judging from the mere cross-sectional profiles and results from multilevel models, one could conclude that recent cohabitation replicates historical differentials. However, several features emerge that strongly mitigate this historical inheritance and fits the Second Demographic Transition theory. Among others, these features include that cohabitation is now a "normal" form of partnership among the expanding top educational groups and that the shift from marriage to prolonged cohabitation is driven by further secularization and an overall shift in values. Time will tell how fast and to what degree the shift to the SDT-type will be occurring in Mexico, but at present it is clear that the shift away from the traditional type is under way

    Coulomb-Volkov approach of ionization by extreme ultraviolet laser pulses in the subfemtosecond regime

    Full text link
    In conditions where the interaction betweeen an atom and a short high-frequency extreme ultraviolet laser pulse is a perturbation, we show that a simple theoretical approach, based on Coulomb-Volkov-type states, can make reliable predictions for ionization. To avoid any additional approximation, we consider here a standard case : the ionization of hydrogen atoms initially in their ground state. For any field parameter, we show that the method provides accurate energy spectra of ejected electrons, including many above threshold ionization peaks, as long as the two following conditions are simultaneously fulfilled : (i) the photon energy is greater than or equal to the ionization potential ; (ii) the ionization process is not saturated. Thus, ionization of atoms or molecules by the high order harmonic laser pulses which are generated at present may be addressed through this Coulomb-Volkov treatment.Comment: 19 pages including 5 figures and figure caption

    Optical thickness and effective radius of Arctic boundary-layer clouds retrieved from airborne nadir and imaging spectrometry

    Get PDF
    Arctic boundary-layer clouds in the vicinity of Svalbard (78° N, 15° E) were observed with airborne remote sensing and in situ methods. The cloud optical thickness and the droplet effective radius are retrieved from spectral radiance data from the nadir spot (1.5°, 350–2100 nm) and from a nadir-centred image (40°, 400–1000 nm). Two approaches are used for the nadir retrieval, combining the signal from either two or five wavelengths. Two wavelengths are found to be sufficient for an accurate retrieval of the cloud optical thickness, while the retrieval of droplet effective radius is more sensitive to the number of wavelengths. Even with the comparison to in-situ data, it is not possible to definitely answer the question which method is better. This is due to unavoidable time delays between the in-situ measurements and the remote-sensing observations, and to the scarcity of vertical in-situ profiles within the cloud

    Airborne measurements of aerosol optical properties related to early spring transport of mid-latitude sources into the Arctic

    Get PDF
    Airborne lidar and in-situ measurements of the aerosol properties were conducted between Svalbard Island and Scandinavia in April 2008. Evidence of aerosol transport from Europe and Asia is given. The analysis of the aerosol optical properties based on a multiwavelength lidar (355, 532, 1064 nm) including volume depolarization at 355 nm aims at distinguishing the role of the different aerosol sources (Siberian wild fires, Eastern Asia and European anthropogenic emissions). Combining, first aircraft measurements, second FLEXPART simulations with a calculation of the PBL air fraction originating from the three different mid-latitude source regions, and third level-2 CALIPSO data products (i.e. backscatter coefficient 532 nm,volume depolarization and color ratio between 1064 and 532 nm in aerosol layers) along the transport pathways, appears a valuable approach to identify the role of the different aerosol sources even after a transport time larger than 4 days. Optical depth of the aerosol layers are always rather small (<4%) while transported over the Arctic and ratio of the total attenuated backscatter (i.e. including molecular contribution) provide more stable result than conventional aerosol backscatter ratio. Above Asia, CALIPSO data indicate more depolarization (up to 15%) and largest color ratio (>0.5) for the northeastern Asia emissions (i.e. an expected mixture of Asian pollution and dust), while low depolarization together with smaller and quasi constant color ratio (≈0.3) are observed for the Siberian biomass burning emissions. A similar difference is visible between two layers observed by the aircraft above Scandinavia. The analysis of the time evolution of the aerosol optical properties revealed by CALIPSO between Asia and Scandinavia shows a gradual decrease of the aerosol backscatter, depolarization ratio and color ratio which suggests the removal of the largest particles in the accumulation mode. A similar study conducted for a European plume has shown aerosol optical properties intermediate between the two Asian sources with color ratio never exceeding 0.4 and moderate depolarization ratio being always less than 8%, i.e. less aerosol from the accumulation mode

    Quasi-long range order in the random anisotropy Heisenberg model

    Full text link
    The large distance behaviors of the random field and random anisotropy Heisenberg models are studied with the functional renormalization group in 4ϵ4-\epsilon dimensions. The random anisotropy model is found to have a phase with the infinite correlation radius at low temperatures and weak disorder. The correlation function of the magnetization obeys a power law <m(r1)m(r2)>r1r20.62ϵ<{\bf m}({\bf r}_1) {\bf m}({\bf r}_2)>\sim| {\bf r}_1-{\bf r}_2|^{-0.62\epsilon}. The magnetic susceptibility diverges at low fields as χH1+0.15ϵ\chi\sim H^{-1+0.15\epsilon}. In the random field model the correlation radius is found to be finite at the arbitrarily weak disorder.Comment: 4 pages, REVTe

    Aerosol-cirrus interactions: A number based phenomenon at all?

    Get PDF
    International audienceIn situ measurements of the partitioning of aerosol particles within cirrus clouds were used to investigate aerosol-cloud interactions in ice clouds. The number density of interstitial aerosol particles (non-activated particles in between the cirrus crystals) was compared to the number density of cirrus crystal residuals. The data was obtained during the two INCA (Interhemispheric Differences in Cirrus Properties form Anthropogenic Emissions) campaigns, performed in the Southern Hemisphere (SH) and Northern Hemisphere (NH) midlatitudes. Different aerosol-cirrus interactions can be linked to the different stages of the cirrus lifecycle. Cloud formation is linked to positive correlations between the number density of interstitial aerosol (Nint) and crystal residuals (Ncvi), whereas the correlations are smaller or even negative in a dissolving cloud. Unlike warm clouds, where the number density of cloud droplets is positively related to the aerosol number density, we observed a rather complex relationship when expressing Ncvi as a function of Nint for forming clouds. The data sets are similar in that they both show local maxima in the Nint range 100 to 200 cm-3, where the SH-maximum is shifted towards the higher value. For lower number densities Nint and Ncvi are positively related. The slopes emerging from the data suggest that a tenfold increase in the aerosol number density corresponds to a 3 to 4 times increase in the crystal number density. As Nint increases beyond the ca. 100 to 200 cm-3, the mean crystal number density decreases at about the same rate for both data sets. For much higher aerosol number densities, only present in the NH data set, the mean Ncvi remains low. The situation for dissolving clouds presents two alternative interactions between aerosols and cirrus. Either evaporating clouds are associated with a source of aerosol particles, or air pollution (high aerosol number density) retards evaporation rates

    Cirrus cloud occurrence as function of ambient relative humidity: A comparison of observations from the Southern and Northern Hemisphere midlatitudes obtained during the INCA experiment

    Get PDF
    International audienceThe occurrence frequency of cirrus clouds as function of ambient relative humidity over ice, based on in-situ observations performed during the INCA experiment, show a clear difference between the campaign carried out at Southern Hemisphere (SH) midlatitudes and the campaign carried out at Northern Hemisphere (NH) midlatitudes. At a given relative humidity above ice saturation, clouds are more frequent in the NH. At relative humidities near ice saturation, clouds defined as containing particles with sizes larger than 0.55 µm diameter and an integral number density above 0.2 cm-3 were present 70% of the time during the SH campaign, whereas clouds where present 95% of the time during the NH campaign. Using a size threshold of 1 µm diameter to define the presence of clouds result in a less frequent occurrence of 60% of the time in the SH campaign and 75% of the time in the NH campaign. The data show that the presence of particles is a common characteristic of cirrus clouds. Clouds at ice saturation defined as having crystal sizes of at least 5 µm diameter and a number density exceeding 0.001 cm-3 were present in about 80% of the time during the SH campaign, and almost 90% of the time during the NH campaign. The observations reveal a significant cloud presence fraction at humidities well below ice saturation. Local minima in the cloud presence fraction as a function of relative humidity are interpreted as systematic underestimation of cloud presence because cloud particles may become invisible to cloud probes. Based on this interpretation the data suggests that clouds in the SH form preferentially at relative humidities between 140 and 155%, whereas clouds in the NH formed at relative humidities less than 130%. A simple assumption about the probability to reach successively higher humidities in an ice supersaturated air parcel provides a model that explains the main trend of the cloud presence fraction as function of relative humidity. If adiabatic processes are assumed a cloud water content distribution can be derived from this probability model. The resulting distribution agrees well in shape compared to observations, but the observed mean cloud water content is less than expected from simply adiabatic processes

    Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010

    Get PDF
    © Author(s) 2011. This work is distributed under the Creative Commons Attribution 3.0 LicenseAirborne lidar and in-situ measurements of aerosols and trace gases were performed in volcanic ash plumes over Europe between Southern Germany and Iceland with the Falcon aircraft during the eruption period of the Eyjafjalla1 volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with lidar directly over the volcano and up to a distance of 2700 km downwind, and up to 120 h plume ages. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 μm diameter, with size and age dependent composition. Ash mass concentrations were derived from optical particle spectrometers for a particle density of 2.6 g cm-3 and various values of the refractive index (RI, real part: 1.59; 3 values for the imaginary part: 0, 0.004 and 0.008). The mass concentrations, effective diameters and related optical properties were compared with ground-based lidar observations. Theoretical considerations of particle sedimentation constrain the particle diameters to those obtained for the lower RI values. The ash mass concentration results have an uncertainty of a factor of two. The maximum ash mass concentration encountered during the 17 flights with 34 ash plume penetrations was below 1 mg m-3. The Falcon flew in ash clouds up to about 0.8 mg m-3 for a few minutes and in an ash cloud with approximately 0.2 mg -3 mean-concentration for about one hour without engine damage. The ash plumes were rather dry and correlated with considerable CO and SO2 increases and O3 decreases. To first order, ash concentration and SO2 mixing ratio in the plumes decreased by a factor of two within less than a day. In fresh plumes, the SO2 and CO concentration increases were correlated with the ash mass concentration. The ash plumes were often visible slantwise as faint dark layers, even for concentrations below 0.1 mg m-3. The large abundance of volatile Aitken mode particles suggests previous nucleation of sulfuric acid droplets. The effective diameters range between 0.2 and 3 μm with considerable surface and volume contributions from the Aitken and coarse mode aerosol, respectively. The distal ash mass flux on 2 May was of the order of 500 (240-1600) kgs -1. The volcano induced about 10 (2.5-50) Tg of distal ash mass and about 3 (0.6-23) Tg of SO2 during the whole eruption period. The results of the Falcon flights were used to support the responsible agencies in their decisions concerning air traffic in the presence of volcanic ash.Peer reviewe

    Quasi-long-range order in the random anisotropy Heisenberg model: functional renormalization group in 4-\epsilon dimensions

    Full text link
    The large distance behaviors of the random field and random anisotropy O(N) models are studied with the functional renormalization group in 4-\epsilon dimensions. The random anisotropy Heisenberg (N=3) model is found to have a phase with the infinite correlation radius at low temperatures and weak disorder. The correlation function of the magnetization obeys a power law < m(x) m(y) >\sim |x-y|^{-0.62\epsilon}. The magnetic susceptibility diverges at low fields as \chi \sim H^{-1+0.15\epsilon}. In the random field O(N) model the correlation radius is found to be finite at the arbitrarily weak disorder for any N>3. The random field case is studied with a new simple method, based on a rigorous inequality. This approach allows one to avoid the integration of the functional renormalization group equations.Comment: 12 pages, RevTeX; a minor change in the list of reference

    Ruthenacycles and Iridacycles as Catalysts for Asymmetric Transfer Hydrogenation and Racemisation

    Get PDF
    Ruthenacycles, which are easily prepared in a single step by reaction between enantiopure aromatic amines and [Ru(arene)Cl2]2 in the presence of NaOH and KPF6, are very good asymmetric transfer hydrogenation catalysts. A range of aromatic ketones were reduced using isopropanol in good yields with ee’s up to 98%. Iridacycles, which are prepared in similar fashion from [IrCp*Cl2]2 are excellent catalysts for the racemisation of secondary alcohols and chlorohydrins at room temperature. This allowed the development of a new dynamic kinetic resolution of chlorohydrins to the enantiopure epoxides in up to 90% yield and 98% enantiomeric excess (ee) using a mutant of the enzyme Haloalcohol dehalogenase C and an iridacycle as racemisation catalyst.
    corecore