888 research outputs found
Controls on the spatial distribution of oceanic <i>δ</i><sup>13</sup>C<sub>DIC</sub>
We describe the design and evaluation of a large ensemble of coupled climate–carbon cycle simulations with the Earth system model of intermediate complexity GENIE. This ensemble has been designed for application to a range of carbon cycle questions, including the causes of late- Quaternary fluctuations in atmospheric CO2. Here we evaluate the ensemble by applying it to a transient experiment over the recent industrial era (1858 to 2008 AD). We employ singular vector decomposition and principal component emulation to investigate the spatial modes of ensemble variability of oceanic dissolved inorganic carbon (DIC) δ13C, considering both the spun-up pre-industrial state and the transient change. These analyses allow us to separate the natural (preindustrial) and anthropogenic controls on the δ13CDIC distribution. We apply the same dimensionally reduced emulation techniques to consider the drivers of the spatial uncertainty in anthropogenic DIC. We show that the sources of uncertainty related to the uptake of anthropogenic δ13CDIC and DIC are quite distinct. Uncertainty in anthropogenic δ13C uptake is controlled by air–sea gas exchange, which explains 63% of modelled variance. This mode of variability is largely absent from the ensemble variability in CO2 uptake, which is rather driven by uncertainties in thermocline ventilation rates. Although the need to account for air–sea gas exchange is well known, these results suggest that, to leading order, uncertainties in the ocean uptake of anthropogenic 13C and CO2 are governed by very different processes. This illustrates the difficulties in reconstructing one from the other, and furthermore highlights the need for careful targeting of both δ13CDIC and DIC observations to better constrain the ocean sink of anthropogenic CO2
Antarctic ice sheet fertilises the Southern Ocean
Open access journalSouthern Ocean (SO) marine primary productivity (PP) is strongly influenced by the availability of iron in surface waters, which is thought to exert a significant control upon atmospheric CO2 concentrations on glacial/interglacial timescales. The zone bordering the Antarctic Ice Sheet exhibits high PP and seasonal plankton blooms in response to light and variations in iron availability. The sources of iron stimulating elevated SO PP are in debate. Established contributors include dust, coastal sediments/upwelling, icebergs and sea ice. Subglacial meltwater exported at the ice margin is a more recent suggestion, arising from intense iron cycling beneath the ice sheet. Icebergs and subglacial meltwater may supply a large amount of bioavailable iron to the SO, estimated in this study at 0.07-0.2 Tg yr-1. Here we apply the MIT global ocean model (Follows et al., 2007) to determine the potential impact of this level of iron export from the ice sheet upon SO PP. The export of iron from the ice sheet raises modelled SO PP by up to 40%, and provides one plausible explanation for seasonally very high in situ measurements of PP in the near-coastal zone. The impact on SO PP is greatest in coastal regions, which are also areas of high measured marine PP. These results suggest that the export of Antarctic runoff and icebergs may have an important impact on SO PP and should be included in future biogeochemical modelling.Philip Leverhulme PrizeLeverhulme Research FellowshipLeverhulme TrustRoyal Society Fellowship7th European Community Framework Programme - Marie Curie Intra European FellowshipNatural Environment Research Council (NERC
Does resuscitation status affect decision making in a deteriorating patient? Results from a randomised vignette study
Aims and objectives: The aim of this paper is to determine the influence of do not attempt cardiopulmonary resuscitation (DNACPR) orders and the Universal Form of Treatment Options (‘UFTO’: an alternative approach that contextualizes the resuscitation decision within an overall treatment plan) on nurses' decision making about a deteriorating patient. Methods: An online survey with a developing case scenario across three timeframes was used on 231 nurses from 10 National Health Service Trusts. Nurses were randomised into three groups: DNACPR, the UFTO and no-form. Statements were pooled into four subcategories: Increasing Monitoring, Escalating Concern, Initiating Treatments and Comfort Measures. Results: Reported decisions were different across the three groups. Nurses in the DNACPR group agreed or strongly agreed to initiate fewer intense nursing interventions than the UFTO and no-form groups (P < 0.001) overall and across subcategories of Increase Monitoring, Escalate Concern and Initiate Treatments (all P < 0.001). There was no difference between the UFTO and no-form groups overall (P = 0.795) or in the subcategories. No difference in Comfort Measures were observed (P = 0.201) between the three groups. Conclusion: The presence of a DNACPR order appears to influence nurse decision making in a deteriorating patient vignette. Differences were not observed in the UFTO and no-form group. The UFTO may improve the way nurses modulate their behaviours towards critically ill patients with DNACPR status. More hospitals should consider adopting an approach where the resuscitation decisions are contextualised within overall goals of care
Antarctic ice sheet fertilises the Southern Ocean
Southern Ocean (SO) marine primary productivity (PP) is strongly influenced by the availability of iron in surface waters, which is thought to exert a significant control upon atmospheric CO2 concentrations on glacial/interglacial timescales. The zone bordering the Antarctic Ice Sheet exhibits high PP and seasonal plankton blooms in response to light and variations in iron availability. The sources of iron stimulating elevated SO PP are in debate. Established contributors include dust, coastal sediments/upwelling, icebergs and sea ice. Subglacial meltwater exported at the ice margin is a more recent suggestion, arising from intense iron cycling beneath the ice sheet. Icebergs and subglacial meltwater may supply a large amount of bioavailable iron to the SO, estimated in this study at 0.07–0.2 Tg yr−1. Here we apply the MIT global ocean model (Follows et al., 2007) to determine the potential impact of this level of iron export from the ice sheet upon SO PP. The export of iron from the ice sheet raises modelled SO PP by up to 40%, and provides one plausible explanation for seasonally very high in situ measurements of PP in the near-coastal zone. The impact on SO PP is greatest in coastal regions, which are also areas of high measured marine PP. These results suggest that the export of Antarctic runoff and icebergs may have an important impact on SO PP and should be included in future biogeochemical modelling.Leverhulme Trust (Philip Leverhulme Prize)Leverhulme Trust (Leverhulme Research Fellowship)Leverhulme Trust (PDRA grant F/00182/BY)Royal Society (Great Britain) (Fellowship)European Commission (Marie-Curie Intra-European Fellowship)Natural Environment Research Council (Great Britain) (NERC Fellowship NE/J019062/1
Potentially bioavailable iron delivery by iceberg-hosted sediments and atmospheric dust to the polar oceans
Iceberg-hosted sediments and atmospheric dust transport potentially bioavailable iron to the Arctic and Southern oceans as ferrihydrite. Ferrihydrite is nanoparticulate and more soluble, as well as potentially more bioavailable, than other iron (oxyhydr)oxide minerals (lepidocrocite, goethite, and hematite). A suite of more than 50 iceberghosted sediments contain a mean content of 0.076 wt% Fe as ferrihydrite, which produces iceberg-hosted Fe fluxes ranging from 0.7 to 5.5 and 3.2 to 25 Gmoles yr 1 to the Arctic and Southern oceans respectively. Atmospheric dust (with little or no combustion products) contains a mean ferrihydrite Fe content of 0.038 wt% (corresponding to a fractional solubility of 1 %) and delivers much smaller Fe fluxes (0.02–0.07 Gmoles yr 1 to the Arctic Ocean and 0.0– 0.02 Gmoles yr 1 to the Southern Ocean). New dust flux data show that most atmospheric dust is delivered to sea ice where exposure to melting/re-freezing cycles may enhance fractional solubility, and thus fluxes, by a factor of approximately 2.5. Improved estimates for these particulate sources require additional data for the iceberg losses during fjord transit, the sediment content of icebergs, and samples of atmospheric dust delivered to the polar regions
Teaching Africa and international studies: Forum introduction
Africa has often been defined and represented by outsiders. In International Studies, the continent is frequently viewed as peripheral and uninteresting. This is clearly a problem, and an increasingly apparent one as the number of courses on Africa and IS grow, both in Africa and beyond. Many academics who run these courses are keen to challenge the continent’s traditional marginalisation and perceived dependency, but they are limited by the resources available to them, and the fact that many are establishing new courses from scratch. This article outlines some of the key debates around teaching Africa and IS, setting the scene for the articles that follow
The effects of climatic fluctuations and extreme events on running water ecosystems
Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world
Comparing research investment to United Kingdom institutions and published outputs for tuberculosis, HIV and malaria: A systematic analysis across 1997-2013
Background: The "Unfinished Agenda" of infectious diseases is of great importance to policymakers and research funding agencies that require ongoing research evidence on their effective management. Journal publications help effectively share and disseminate research results to inform policy and practice. We assess research investments to United Kingdom institutions in HIV, tuberculosis and malaria, and analyse these by numbers of publications and citations and by disease and type of science. Methods: Information on infection-related research investments awarded to United Kingdom institutions across 1997-2010 were sourced from funding agencies and individually categorised by disease and type of science. Publications were sourced from the Scopus database via keyword searches and filtered to include only publications relating to human disease and containing a United Kingdom-based first and/or last author. Data were matched by disease and type of science categories. Investment (United Kingdom pounds) and publications were compared to generate an 'investment per publication' metric; similarly, an 'investment per citation' metric was also developed as a measure of the usefulness of research. Results: Total research investment for all three diseases was £1.4 billion, and was greatest for HIV (£651.4 million), followed by malaria (£518.7 million) and tuberculosis (£239.1 million). There were 17,271 included publications, with 9,322 for HIV, 4,451 for malaria, and 3,498 for tuberculosis. HIV publications received the most citations (254,949), followed by malaria (148,559) and tuberculosis (100,244). According to UK pound per publication, tuberculosis (£50,691) appeared the most productive for investment, compared to HIV (£61,971) and malaria (£94,483). By type of science, public health research was most productive for HIV (£27,296) and tuberculosis (£22,273), while phase I-III trials were most productive for malaria (£60,491). According to UK pound per citation, tuberculosis (£1,797) was the most productive area for investment, compared to HIV (£2,265) and malaria (£2,834). Public health research was the most productive type of science for HIV (£2,265) and tuberculosis (£1,797), whereas phase I-III trials were most productive for malaria (£1,713). Conclusions: When comparing total publications and citations with research investment to United Kingdom institutions, tuberculosis research appears to perform best in terms of efficiency. There were more public health-related publications and citations for HIV and tuberculosis than other types of science. These findings demonstrate the diversity of research funding and outputs, and provide new evidence to inform research investment strategies for policymakers, funders, academic institutions, and healthcare organizations.Infectious Disease Research Networ
Detecting genes associated with antimicrobial resistance and pathogen virulence in three New Zealand rivers
The emergence of clinically significant antimicrobial resistance (AMR) in bacteria is frequently attributed to the use of antimicrobials in humans and livestock and is often found concurrently with human and animal pathogens. However, the incidence and natural drivers of antimicrobial resistance and pathogenic virulence in the environment, including waterways and ground water, are poorly understood. Freshwater monitoring for microbial pollution relies on culturing bacterial species indicative of faecal pollution, but detection of genes linked to antimicrobial resistance and/or those linked to virulence is a potentially superior alternative. We collected water and sediment samples in the autumn and spring from three rivers in Canterbury, New Zealand; sites were above and below reaches draining intensive dairy farming. Samples were tested for loci associated with the AMR-related group 1 CTX-M enzyme production (bla CTX-M) and Shiga toxin producing Escherichia coli (STEC). The bla CTX-M locus was only detected during spring and was more prevalent downstream of intensive dairy farms. Loci associated with STEC were detected in both the autumn and spring, again predominantly downstream of intensive dairying. This cross-sectional study suggests that targeted testing of environmental DNA is a useful tool for monitoring waterways. Further studies are now needed to extend our observations across seasons and to examine the relationship between the presence of these genetic elements and the incidence of disease in humans.fals
The respiratory research agenda in primary care in Portugal: a Delphi study
Background: A research agenda can help to stimulate and guide research. The International Primary Care Respiratory Group (IPCRG) published a Research Needs Statement (RNS) in 2010 in which 145 research questions were identified. In 2012, priorities for respiratory research were established, based on these questions. To date, there has been no statement on primary care respiratory research needs in Portugal. The aim of the study was to develop a national consensus on research priorities in respiratory diseases in primary care in Portugal and to assess the applicability of the priorities for respiratory research set by the IPCRG.
Method: We conducted a Delphi study by electronic mail with a panel of experts on respiratory disease from primary and secondary care in Portugal. In the first round, the research needs in respiratory disease in Portugal were identified. In the second round, 196 research questions in six disease areas, derived from the first round and from the IPCRG Respiratory needs statement, were prioritised on a five-point Likert-type scale. In the third round, the questions were prioritized again with feed-back provided on the median scores for each item in the second round. Consensus was considered to have been reached when 80 % of the participants gave a score of 4 or 5 out of five on a given item.
Results: The 40 experts identified 121 respiratory research questions in Round 1 and expressed their views on 196 questions in Rounds 2 and 3. Twelve research questions (6 %) reached consensus. There were five questions in the asthma domain on early diagnosis, pulmonary function tests, the use of inhalers, and adherence to treatment. There were four questions in the chronic obstructive pulmonary disease domain on vaccinations, on routine monitoring and evaluation of treatment, on diagnosis, and on adherence to treatments. There was one question in the smoking domain on the effects of brief counselling. There were two questions on respiratory tract infections on the treatment of children and on the prescription of antibiotics. An additional 23 research questions (12 %) achieved consensus between 75 and 79 %.
Conclusion: The results reflect the Portuguese reality in response the international agenda for research on respiratory diseases published by the IPCRG. They can support the development of future respiratory disease research in Portugal.Financial support for this work was provided by FEDER funds through the Operational Programme Competitiveness Factors - COMPETE and National Funds through FCT - Foundation for Science and Technology under the project POCI-01-0145-FEDER-007038; and by the project NORTE-01-0145-FEDER-000013, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). PMT is partially supported by a grant from the International Primary Care Respiratory Group
- …
