1,709 research outputs found

    The radial defocusing energy-supercritical cubic nonlinear wave equation in R^{1+5}

    Get PDF
    In this work, we consider the energy-supercritical defocusing cubic nonlinear wave equation in dimension d=5 for radially symmetric initial data. We prove that an a priori bound in the critical space implies global well-posedness and scattering. The main tool that we use is a frequency localized version of the classical Morawetz inequality, inspired by recent developments in the study of the mass and energy critical nonlinear Schr\"odinger equation.Comment: AMS Latex, 20 page

    Enhanced d_{x^2-y^2} pairing correlations in the two-leg Hubbard ladder

    Full text link
    The two-leg Hubbard ladder is characterized by the ratio of the inter- to intra-leg hopping t_perp/t, the relative interaction strength U/t and the electron filling. Here, using density matrix renormalization group and Monte Carlo simulations, we examine the dependence of the pairing correlations on these parameters. We find that the pairing correlations are enhanced when the top of the bonding quasiparticle band and the bottom of the antibonding band are near the Fermi level. We present results on the single-particle spectral weight and the antiferromagnetic correlations in order to explain this behavior.Comment: 6 pages including 10 eps figures, uses revtex and epsfi

    Formation of interstellar SH+^+ from vibrationally excited H2_2: Quantum study of S+^+ + H2_2 \rightleftarrows SH+^+ + H reactions and inelastic collisions

    Full text link
    The rate constants for the formation, destruction, and collisional excitation of SH+^+ are calculated from quantum mechanical approaches using two new SH2+_2^+ potential energy surfaces (PESs) of 4A^4A'' and 2A^2A'' electronic symmetry. The PESs were developed to describe all adiabatic states correlating to the SH+^+ (3Σ^3\Sigma^-) + H(2S^2S) channel. The formation of SH+^+ through the S+^+ + H2_2 reaction is endothermic by \approx 9860 K, and requires at least two vibrational quanta on the H2_2 molecule to yield significant reactivity. Quasi-classical calculations of the total formation rate constant for H2_2(v=2v=2) are in very good agreement with the quantum results above 100K. Further quasi-classical calculations are then performed for v=3v=3, 4, and 5 to cover all vibrationally excited H2_2 levels significantly populated in dense photodissociation regions (PDR). The new calculated formation and destruction rate constants are two to six times larger than the previous ones and have been introduced in the Meudon PDR code to simulate the physical and illuminating conditions in the Orion bar prototypical PDR. New astrochemical models based on the new molecular data produce four times larger SH+^+ column densities, in agreement with those inferred from recent ALMA observations of the Orion bar.Comment: 8 pages, 7 figure

    Anisotropy on the Fermi Surface of the Two-Dimensional Hubbard Model

    Get PDF
    We investigate anisotropic charge fluctuations in the two-dimensional Hubbard model at half filling. By the quantum Monte Carlo method, we calculate a momentum-resolved charge compressibility κ(k)=d<n(k)>/dμ\kappa (\bm{k}) = {d < n(\bm{k}) >}/{d \mu}, which shows effects of an infinitesimal doping. At the temperature Tt2/UT \sim {t^2}/{U}, κ(k)\kappa (\bm{k}) shows peak structure at the (±π/2,±π/2)(\pm \pi/2,\pm \pi/2) points along the kx+ky=π|k_x| + |k_y| = \pi line. A similar peak structure is reproduced in the mean-filed calculation for the d-wave pairing state or the staggered flux state.Comment: 5 pages, 3 figures, figures and presentation are modifie

    d_{x^2-y^2} Symmetry and the Pairing Mechanism

    Full text link
    An important question is if the gap in the high temperature cuprates has d_{x^2-y^2} symmetry, what does that tell us about the underlying interaction responsible for pairing. Here we explore this by determining how three different types of electron-phonon interactions affect the d_{x^2-y^2} pairing found within an RPA treatment of the 2D Hubbard model. These results imply that interactions which become more positive as the momentum transfer increases favor d_{x^2-y^2} pairing in a nearly half-filled band.Comment: 9 pages and 2 eps figs, uses revtex with epsf, in press, PR

    Theory of spin and charge fluctuations in the Hubbard model

    Full text link
    A self-consistent theory of both spin and charge fluctuations in the Hubbard model is presented. It is in quantitative agreement with Monte Carlo data at least up to intermediate coupling (U8t)(U\sim 8t). It includes both short-wavelength quantum renormalization effects, and long-wavelength thermal fluctuations which can destroy long-range order in two dimensions. This last effect leads to a small energy scale, as often observed in high temperature superconductors. The theory is conserving, satisfies the Pauli principle and includes three-particle correlations necessary to account for the incipient Mott transition.Comment: J1K 2R1 10 pages, Revtex 3.0, 4 uuencoded postscript figures, report# CRPS-93-4

    Quantum Monte Carlo study of a nonmagnetic impurity in the two-dimensional Hubbard model

    Full text link
    In order to investigate the effects of nonmagnetic impurities in strongly correlated systems, Quantum Monte Carlo (QMC) simulations have been carried out for the doped two-dimensional Hubbard model with one nonmagnetic impurity. Using a bare impurity potential which is onsite and attractive, magnetic and single-particle properties have been calculated. The QMC results show that giant oscillations develop in the Knight shift response around the impurity site due to the short-range antiferromagnetic correlations. These results are useful for interpreting the NMR data on Li and Zn substituted layered cuprates.Comment: 10 pages, 7 figure

    Quasiparticle Dispersion of the 2D Hubbard Model: From an Insulator to a Metal

    Full text link
    On the basis of Quantum-Monte-Carlo results the evolution of the spectral weight A(k,ω)A(\vec k, \omega) of the two-dimensional Hubbard model is studied from insulating to metallic behavior. As observed in recent photoemission experiments for cuprates, the electronic excitations display essentially doping-independent features: a quasiparticle-like dispersive narrow band of width of the order of the exchange interaction JJ and a broad valence- and conduction-band background. The continuous evolution is traced back to one and the same many-body origin: the doping-dependent antiferromagnetic spin-spin correlation.Comment: 11 pages, REVtex, 4 figures (in uuencoded postscript format

    OH+ in astrophysical media: state-to-state formation rates, Einstein coefficients and inelastic collision rates with He

    Get PDF
    The rate constants required to model the OH+^+ observations in different regions of the interstellar medium have been determined using state of the art quantum methods. First, state-to-state rate constants for the H2(v=0,J=0,1)_2(v=0,J=0,1)+ O+^+(4S^4S) \rightarrow H + OH+(X3Σ,v,N)^+(X ^3\Sigma^-, v', N) reaction have been obtained using a quantum wave packet method. The calculations have been compared with time-independent results to asses the accuracy of reaction probabilities at collision energies of about 1 meV. The good agreement between the simulations and the existing experimental cross sections in the 0.010.01-1 eV energy range shows the quality of the results. The calculated state-to-state rate constants have been fitted to an analytical form. Second, the Einstein coefficients of OH+^+ have been obtained for all astronomically significant ro-vibrational bands involving the X3ΣX^3\Sigma^- and/or A3ΠA^3\Pi electronic states. For this purpose the potential energy curves and electric dipole transition moments for seven electronic states of OH+^+ are calculated with {\it ab initio} methods at the highest level and including spin-orbit terms, and the rovibrational levels have been calculated including the empirical spin-rotation and spin-spin terms. Third, the state-to-state rate constants for inelastic collisions between He and OH+(X3Σ)^+(X ^3\Sigma^-) have been calculated using a time-independent close coupling method on a new potential energy surface. All these rates have been implemented in detailed chemical and radiative transfer models. Applications of these models to various astronomical sources show that inelastic collisions dominate the excitation of the rotational levels of OH+^+. In the models considered the excitation resulting from the chemical formation of OH+^+ increases the line fluxes by about 10 % or less depending on the density of the gas

    One particle spectral weight of the three dimensional single band Hubbard model

    Full text link
    Dynamic properties of the three-dimensional single-band Hubbard model are studied using Quantum Monte Carlo combined with the maximum entropy technique. At half-filling, there is a clear gap in the density of states and well-defined quasiparticle peaks at the top (bottom) of the lower (upper) Hubbard band. We find an antiferromagnetically induced weight above the naive Fermi momentum. Upon hole doping, the chemical potential moves to the top of the lower band where a robust peak is observed. Results are compared with spin-density-wave (SDW) mean-field and self consistent Born approximation results, and also with the infinite dimensional Hubbard model, and experimental photoemission (PES) for three dimensional transition-metal oxides.Comment: 11 pages, REVTeX, 16 figures included using psfig.sty. Ref.30 correcte
    corecore