A self-consistent theory of both spin and charge fluctuations in the Hubbard
model is presented. It is in quantitative agreement with Monte Carlo data at
least up to intermediate coupling (U∼8t). It includes both
short-wavelength quantum renormalization effects, and long-wavelength thermal
fluctuations which can destroy long-range order in two dimensions. This last
effect leads to a small energy scale, as often observed in high temperature
superconductors. The theory is conserving, satisfies the Pauli principle and
includes three-particle correlations necessary to account for the incipient
Mott transition.Comment: J1K 2R1 10 pages, Revtex 3.0, 4 uuencoded postscript figures, report#
CRPS-93-4