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We investigate anisotropic charge fluctuations in the two-dimensional Hubbard model at half-filling. By the
quantum Monte Carlo method, we calculate a momentum-resolved charge compressibilityk(k)
5d^n(k)&/dm, which shows the effects of an infinitesimal doping. At the temperatureT;t2/U, k(k) shows a
peak structure at the~6p/2,6p/2! points along theukxu1ukyu5p line. A similar peak structure is reproduced
in the mean-field calculation for thed-wave pairing state or the staggered flux state.
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The effects of electron-electron interaction have attrac
much nterest. One of the most significant phenomena
strongly correlated electron system is the Mott transiti
which is a quantum phase transition driven by the inter
tion. This Mott insulator has a finite charge gap, and
anitiferromagnetism often accompanies. Recently, vari
anomalous properties were found near the Mott transit
There has been a proposal that the interaction brings a
anisotropy in the low-energy excitations. For example,
spectral weight of the two-dimensional Hubbard model w
investigated.1–4 In addition, the deformation of the Ferm
surface~FS! due to the interaction occurs in thet-J model.5,6

A singular momentum dependence was also observed ex
mentally. Angle-resolved photoemission spectroscopy m
surements suggested anisotropic properties in the low-en
excitations.7 These anomalous properties were widely o
served in the strongly correlated electron system, and t
could be an evidence of the non-Fermi-liquid behavior. It
thus an important and appealing topic to study the lo
energy excitations with momentum resolution.

The anisotropy in low-energy excitations is natural, if w
assume ad-wave pairing state or a flux state.8 They both
have a singular energy dispersion that has gap nodes a
the diagonal directionsukxu5ukyu, while a gap opens aroun
the ~6p,0! and~0,6p! points. Thus one expects anisotrop
charge excitations near the Fermi surface. In general, h
ever, these states compete with other instabilities. Espec
at a rational filling, the system often belongs to an antifer
magnetic Mott insulator where the charge degree of freed
is frozen. In this case, the Ne´el state well describes th
ground state. Nevertheless, thed-wave pairing state or the
flux state can give a sound basis for the interpretation
some singular phenomena near the Mott insulator at a fi
temperature.

In this paper, we investigate the charge fluctuation in
half-filled Hubbard model on a two-dimensional square l
tice. Using the quantum Monte Carlo method, we calcul
the momentum-resolved charge compressibility

k~k!5
d^n~k!&

dm
,

where ^n(k)&5^ck
†ck& denotes the momentum distributio

function andm the chemical potential. The integral ofk(k)
0163-1829/2002/66~7!/073109~4!/$20.00 66 0731
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is equal to the charge compressibilityk5*dkk(k). If the
system has a finite charge gap, the charge compressib
decreases exponentially toward zero as the temperatu
lowered. Thus, at half-filling, we cannot calculatek(k) with
sufficient numerical accuracy at a very low temperature. A
finite temperature, an infinitesimal shift ofm causes an in-
finitesimal doping. This means thatk(k) reflects the distri-
bution of infinitesimally doped carriers with a momentu
resolutiondn(k)'k(k)dm. Without the interaction,k(k) is
peaked on the Fermi surface and its value is constant
half-filling, this non-interacting Fermi surface is a square
the Brillouin zone,ukxu1ukyu5p. We define the Fermi sur
face as this square in this paper.

We calculatek(k) at half-filling. Here the charge degre
of freedom is almost frozen and the system is domina
only by an insulating fixed point~antiferromagnetic Mott
insulator! at the low temperature (T!t2/U). On the other
hand, at a sufficiently high temperature (T@U), the Cou-
lomb interactionU is irrelevant. We focus on the intermed
ate temperature region (T;t2/U), expecting an interaction
between charge and spin degree of freedom gives non-tr
feature onk(k) even at half-filling.

The Hamiltonian of the two-dimensional Hubbard mod
is given by

H52t (
^ i , j &,s

~cis
† cj s1cj s

† cis!

1U(
i

~ni↑21/2!~ni↓21/2!2m(
i ,s

nis ,

where ^ i , j & denotes the nearest-neighbor links andt the
nearest-neighbor hopping amplitude. The system is o
square lattice and we impose periodic boundary conditio

In order to obtain approximation-free results, we empl
the finite temperature auxiliary field quantum Monte Ca
~QMC! method.9–11 In this method, physical observables a
evaluated in the grand canonical ensemble. This make
possible to obtaink(k) by a direct sampling in the QMC
simulations as

k~k!5bS K n~k!(
k

n~k!L 2^n~k!&K (
k

n~k!L D ,
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where b denotes an inverse temperature. If we calcul
k(k) by numerically differentiating the QMC datân(k)&,
we need to perform simulations for the doped system. T
brings about a notorious sign problem, which prevents
from obtaining reliable data. On the other hand, a dir
evaluation ofk(k) only needs a simulation at half-filling
where the sign problem does not occur due to the parti
hole symmetry. The number of electrons is not fixed at h
filling in the QMC ensembles, even if we set the chemi
potential m50. Thus, the information on infinitesimall
doped systems is statistically taken into account ink(k).

The simulations were performed on a 16316 square lat-
tice. The finite size effects onk(k) are not observed with this
lattice size at the temperatures we studied. The Trotter t
slice size is set to beDt.0.1/t. We have checked that th
systematic error due to the Trotter decomposition does
change qualitative features. For the interacting case,
strength of the interaction is set to beU/t54, where the
charge gap isEg.0.6t.12 We typically performed 500 Monte
Carlo sweeps in order to reach a thermal equilibrium f
lowed by;104 measurement sweeps. The measurements
divided into ten blocks, and the statistical error is estima
by the variance among the blocks.

At first, let us discuss results at the temperatureT;t2/U.
The results ofk(k) for U/t50 andU/t54 are shown in Fig.
1. For the noninteracting case, the value ofk(k) on the FS is
constant. On the other hand, forU/t54, a peak structure
emerges ink(k) at the (6p/2,6p/2) points. This indicates
that the (6p/2,6p/2) points are more sensitive to the sh
of the chemical potential than (6p,0) or (0,6p). In other
words, the system is morecompressibleat the (6p/2,

FIG. 1. The momentum-resolved compressibilityk(k)
5d^n(k)&/dm obtained by the quantum Monte Carlo simulations
T/t50.2 on a 16316 lattice: ~a! for U/t50 and ~b! for U/t54.
The areas with large values ofk(k) are highlighted for the contou
plots. Without the interaction (U/t50), k(k) is constant on the
Fermi surface. On the other hand, forU/t54, k(k) shows a peak
structure at the (6p/2,6p/2) points.
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6p/2) points. Here we note that the interaction does
change the line defined bŷn(k)&50.5, which is identical
with the FS in the noninteracting case. In this sense,
shape of the Fermi surface itself is not deformed
half-filling.13

Next we discuss the temperature dependence ofk(k). The
results ofk(k) for U/t54 at several temperatures are pr
vided in Fig. 2. The peak structure at the (6p/2,6p/2)
points is clearly observed atT;t2/U. It becomes ambiguous
as the temperature increases, and vanishes aboveT;U. Here
we note that the antiferromagnetic correlation length
smaller than the linear system size at these temperat
(T/t>0.2). There are two known characteristic energy sca
in the Hubbard model. One is the Coulomb interactionU and
the other is the effective superexchange interactionJ;t2/U.
Our results show that the peak structure ink(k) emerges at
the temperatureT;J and vanishes atT.U.

In the half-filled Hubbard model, antiferromagnetic lon
range order appears atT50. At a finite temperature, the
system does not have any long-range order. Then there i
a priori reason to expect such an anisotropy in the cha
compressibility. Thus, we compare the QMC results w
various mean-field solutions at the temperatureT;J. We
focus on three possible mean-field solutions; the Ne´el state,
the d-wave pairing state, and the staggered flux state. As
effective model of the Hubbard model,14 we use thet-J
model to compare with our QMC results,

H52t (
^ j ,k&,s

~cj s
† cks1cks

† cj s!

1J(
^ j ,k&

S Sj•Sk2
1

4
njnkD2m(

i ,s
nis ,

whereSi5
1
2 (s,s8cis

† sss8cis8 and the double occupancy a
the same site is prohibited. We take order parameters

t

FIG. 2. The momentum-resolved compressibilityk(k)
5d^n(k)&/dm obtained by the quantum Monte Carlo simulatio
on a 16316 lattice forU/t54 at various temperatures. The pea
structure at the (6p/2,6p/2) points vanishes atT.U.
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D jk5
J

2
^~cj↑ck↓2cj↓ck↑!& ~d-wave pairing!,

x jk5
J

2
^~cj↑ck↑

† 1cj↓ck↓
† !& ~staggered flux!,

mj5J^Sj
z& ~Néel!.

We setD jk to have thed-wave symmetry and its amplitude i
constant,D. The link orderx jk is chosen so that the effectiv
magnetic flux for each plaquette takesf or 2f alternately.
The parameters satisfyD/t,1 or f,p where the low-lying
excitations are described by anisotropic Dirac fermions15

The staggered magnetizationmj is (21) j x1 j ym. In order to
apply the mean-field ansatz, we introduce auxiliary fields
decouple the superexchange term and incorporate the
straints of no double occupancy. Next we apply the sadd
point approximation and neglect the fluctuation around it
taking order parameters as an input parameter~without a
self-consistency condition!. In low dimensions, the fluctua-
tions generally play a role of destructing the long-range
der, and it is natural to expect it in our case. Our focus
however, not on such a long-distance behavior.

We showk(k) at half-filling for these mean-field states i
Fig. 3. The peak structure at the (6p/2,6p/2) points is
observed in thed-wave pairing or the staggered flux stat
which is similar to the QMC results. This implies that th
d-wave pairing state or the staggered flux state compe
with the Néel order at a finite temperature and they giv
good descriptions of the short-distance behavior. Howev
we do not claim that these mean-field states become lo
range ordered at half-filling. Our interest is in which type
order parameter can give the anisotropy in the charge c
pressibility atT;J. Even if these mean-field states are u
stable, they can still play an important role at a finite tem
perature. On the other hand,k(k) of the Néel state gives a
constant value on the FS, which does not reproduce
QMC results. The ground state of the half-filled system
well described by the Ne´el state, while the system behave
essentially as a noninteracting case at a sufficiently high te
perature (T@U). Both the Ne´el state and the noninteractin
metallic state give a constantk(k) on the FS. Therefore, one
of the natural scenarios for the anisotropy ink(k) is that
different kinds of fixed points exist and bring about som
singular phenomena at an intermediate temperature. Fin
we note that a possible admixture of different orders m
happen at a low temperature.

In summary, we have investigated the charge fluctuat
in the two-dimensional Hubbard model by the quantu
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Monte Carlo method. The momentum-resolved charge c
pressibility k(k) is focused on at a finite temperature.
gives information on the infinitesimal doping in the Mo
insulator. The peak structure at the (6p/2,6p/2) points is
observed ink(k) at the temperatureT;t2/U. It is qualita-
tively consistent with the calculation for thed-wave pairing
state or the staggered flux state, while the low tempera
(T!t2/U) behavior is dominated by the antiferromagne
Mott insulator. This peak structure disappears at the h
temperatureT.U where the Coulomb interaction is irre
evant. The crossover observed in our results reflects the
istence of several fixed points~including unstable ones! in
the strongly correlated electron systems.

We thank M. Imada, Y. Kato, S. Ryu, J. Kishine, K. Yon
mitsu, and P. A. Lee for fruitful discussions. The compu
tion in this work was done in part using the facilities of th
Supercomputer Center, ISSP, University of Tokyo.

FIG. 3. The mean-field calculations of the momentum-resol
compressibilityk(k)5d^n(k)&/dm at T/t50.2: ~a! for the d-wave
pairing state (D/t50.2), ~b! for the staggered flux state (f5p/6),
and~c! for the Néel state (m/t50.6). The areas with large values o
k(k) are highlighted. Thek(k) shows a peak structure at the
(6p/2,6p/2) points on the Fermi surface for thed-wave or stag-
gered flux state, which is consistent with the quantum Monte C
simulations. On the other hand, for the Ne´el state,k(k) is constant
on the Fermi surface.
.
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