24 research outputs found

    US power plant sites at risk of future sea-level rise

    Get PDF
    Unmitigated greenhouse gas emissions may increase global mean sea-level by about 1 meter during this century. Such elevation of the mean sea-level enhances the risk of flooding of coastal areas. We compute the power capacity that is currently out-of-reach of a 100-year coastal flooding but will be exposed to such a flood by the end of the century for different US states, if no adaptation measures are taken. The additional exposed capacity varies strongly among states. For Delaware it is 80% of the mean generated power load. For New York this number is 63% and for Florida 43%. The capacity that needs additional protection compared to today increases by more than 250% for Texas, 90% for Florida and 70% for New York. Current development in power plant building points towards a reduced future exposure to sea-level rise: proposed and planned power plants are less exposed than those which are currently operating. However, power plants that have been retired or canceled were less exposed than those operating at present. If sea-level rise is properly accounted for in future planning, an adaptation to sea-level rise may be costly but possible

    Tomography of the Quark Gluon Plasma by Heavy Quarks

    Full text link
    Using the recently published model \cite{Gossiaux:2008jv,goss2} for the collisional energy loss of heavy quarks in a Quark Gluon Plasma (QGP), based on perturbative QCD (pQCD), we study the centrality dependence of RAAR_{AA} and RAA(pTmin)R_{AA}(p_T^{min}), %= \frac{dN_{AA}/dp_T}{ dN_{pp}/dp_T}$ measured by the Phenix collaboration, and compare our model with other approaches based on pQCD and on Anti de Sitter/ Conformal Field Theory (AdS/CFT)Comment: proceedings for SQM0

    Environmental considerations and current status of grouping and regulation of engineered nanomaterials

    Get PDF
    This article reviews the current status of nanotechnology with emphasis on application and related environmental considerations as well as legislation. Application and analysis of nanomaterials in infrastructure (construction, building coatings, and water treatment) is discussed, and in particular nanomaterial release during the lifecycle of these applications. Moreover, possible grouping approaches with regard to ecotoxicological and toxicological properties, and the fate of nanomaterials in the environment are evaluated. In terms of potential exposure, the opportunities that arise from leveraging advances in several key areas, such as water treatment and construction are addressed. Additionally, this review describes challenges with regard to the European Commission’s definition of ‘nanomaterial’. The revised REACH information requirements, intended to enable a comprehensive risk assessment of nanomaterials, are outlined

    Analytical and toxicological aspects of nanomaterials in different product groups: Challenges and opportunities

    Get PDF
    The widespread integration of engineered nanomaterials into consumer and industrial products creates new challenges and requires innovative approaches in terms of design, testing, reliability, and safety of nanotechnology. The aim of this review article is to give an overview of different product groups in which nanomaterials are present and outline their safety aspects for consumers. Here, release of nanomaterials and related analytical challenges and solutions as well as toxicological considerations, such as dose-metrics, are discussed. Additionally, the utilization of engineered nanomaterials as pharmaceuticals or nutraceuticals to deliver and release cargo molecules is covered. Furthermore, critical pathways for human exposure to nanomaterials, namely inhalation and ingestion, are discussed in the context of risk assessment. Analysis of NMs in food, innovative medicine or food contact materials is discussed. Specific focus is on the presence and release of nanomaterials, including whether nanomaterials can migrate from polymer nanocomposites used in food contact materials. With regard to the toxicology and toxicokinetics of nanomaterials, aspects of dose metrics of inhalation toxicity as well as ingestion toxicology and comparison between in vitro and in vivo conclusions are considered. The definition of dose descriptors to be applied in toxicological testing is emphasized. In relation to potential exposure from different products, opportunities arising from the use of advanced analytical techniques in more unique scenarios such as release of nanomaterials from medical devices such as orthopedic implants are addressed. Alongside higher product performance and complexity, further challenges regarding material characterization and safety, as well as acceptance by the general public are expected

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    US power plant sites at risk of future sea-level rise

    No full text

    TTomography of quark gluon plasma at energies available at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC)

    No full text
    submitted to PRCUsing the recently published model for the collisional energy loss of heavy quarks (Q) in a Quark Gluon Plasma (QGP), based on perturbative QCD (pQCD) with a running coupling constant, we study the interaction between heavy quarks and plasma particles in detail. We discuss correlations between the simultaneously produced cc and cˉ\bar{c} quarks, study how central collisions can be experimentally selected, predict observable correlations and extend our model to the energy domain of the large hadron collider (LHC). We finally compare the predictions of our model with that of other approaches like AdS/CFT
    corecore