8 research outputs found

    Legacy of pre-disturbance spatial pattern determines early structural diversity following severe disturbance in mountain spruce forests in Czech Republic

    Get PDF
    Background Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how predisturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand. Methods Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover. Results Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, predisturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights

    Patterns of forest dynamics in a secondary old-growth beech-dominated forest in the Jizera Mountains Beech Forest Reserve, Czech Republic

    No full text
    Restoring the structural characteristics of secondary old-growth forests that were previously managed is increasingly debated to help increase the area of more complex forests which provide a broader array of forest services and functions. The paucity of long-term data sets in Central Europe has limited our ability to understand the ongoing ecological processes required for effective restoration programs for old-growth forests. To address this, we used repeated census data from eight permanent plots to evaluate forest structural dynamics over a 12-year period in the largest complex of European beech (Fagus sylvatica L.) forests in the Czech Highlands without intensive forestry intervention for almost 50 years. Our results showed that previously managed forests can exhibit structural qualities typically associated with old-growth forests after management has ceased for a period. The stand structural characteristics (e.g., density of large and old trees) is comparable with protected reserves of old-growth European beech-dominated forests. The average stand age was 196 years, but the oldest tree was 289 years old. The annual mortality rate was 0.43% for all species, and the U-shaped distribution indicating size-dependent mortality is likely an important process that is balanced by the turnover of new tree recruitment. During the study period, we detected that the diameter distribution tended towards a rotated sigmoid distribution. The lasting effects of the most recent forest management are evident in the scarcity of dead wood, and a prolonged process of dead wood accumulation has begun. Thus, the abandonment of all management activities in near-natural forest reserves, including dead wood removal, will ensure that the forests will develop characteristics typical of old-growth forests

    Both Cyclone‐induced and Convective Storms Drive Disturbance Patterns in European Primary Beech Forests

    No full text
    Abstract Wind is the leading disturbance agent in European forests, and the magnitude of wind impacts on forest mortality has increased over recent decades. However, the atmospheric triggers behind severe winds in Western Europe (large‐scale cyclones) differ from those in Southeastern Europe (small‐scale convective instability). This geographic difference in wind drivers alters the spatial scale of resulting disturbances and potentially the sensitivity to climate change. Over the 20th century, the severity and prevalence of cyclone‐induced windstorms have increased while the prevalence of atmospheric instability has decreased and thus, the trajectory of Europe‐wide windthrow remains uncertain. To better predict forest sensitivity and trends of windthrow disturbance we used dendrochronological methods to reconstruct 140 years of disturbance history in beech‐dominated primary forests of Central and Eastern Europe. We compared generalized linear mixed models of these disturbance time series to determine whether large‐scale cyclones or small‐scale convective storms were more responsible for disturbance severity while also accounting for topography and stand character variables likely to influence windthrow susceptibility. More exposed forests, forests with a longer absence of disturbance, and forests lacking recent high severity disturbance showed increased sensitivity to both wind drivers. Large‐scale cyclone‐induced windstorms were the main driver of disturbance severity at both the plot and stand scale (0.1–∼100 ha) whereas convective instability effects were more localized (0.1 ha). Though the prevalence and severity of cyclone‐induced windstorms have increased over the 20 century, primary beech forests did not display an increase in the severity of windthrow observed over the same period

    Climate extremes during high competition contribute to mortality in unmanaged self-thinning Norway spruce stands in Bulgaria

    No full text
    Climatic variability often is thought to be most important for ecosystem development at ecotones, while competition is thought to be most important farther from ecotones, where neighboring plants compete for scarce resources. However, climatic variability may also modulate consequences of competition, especially under recent and future climate change. Norway spruce (Picea abies) forests are among the most important ecosystems in the mountain regions of Europe and provide various ecosystem services. Many of these forests are currently in a self-thinning, stem-exclusion phase. Understanding processes governing forest dynamics during this phase is necessary for understanding future forest structure and processes as well as effects of climatic variability on ongoing forest development. We studied growth and mortality patterns in unmanaged 100-150 years-old Norway spruce forests that originated after stand-replacing disturbances in the Parangalitsa Reserve in Bulgaria. We collected data on forest structure and tree ring samples from 648 live and dead trees (DBH >4 cm) to analyze onset, pattern and duration of mortality, as well as contributing factors.We found that climate extremes acted together with competition to cause sharp growth declines lasting from a few years to several decades and, in some cases, eventually led to death. The majority of dead trees had one to several consecutive growth declines, most of which initiated in response to extreme summer droughts during periods of high within-stand competition (after trees were 40-50 years old). Our tree-ring analysis revealed that some suppressed trees that died were more drought-sensitive than living trees. Other climate extremes such as unusually cold winters or summers also contributed to sharp growth reductions in some cases. Trees that died had significantly lower initial radial growth, which suggests that in the absence of external disturbances, the outcome of mortality in the stem-exclusion stage may be pre-determined from factors that determine initial growth rates. Spatial distribution data showed that there was no significant aggregation of dead and live trees and that in almost all cases, neither live nor dead trees were clustered.Our findings contribute to understanding mortality processes in self-thinning subalpine Norway spruce forests in Europe and show that under climate change scenarios that include more frequent future droughts, even forests in which competition is thought to be the main driver of dynamics, may experience higher rates of mortality
    corecore