40 research outputs found

    What makes slow samples slow in the Sherrington-Kirkpatrick model

    Full text link
    Using results of a Monte Carlo simulation of the Sherrington-Kirkpatrick model, we try to characterize the slow disorder samples, namely we analyze visually the correlation between the relaxation time for a given disorder sample JJ with several observables of the system for the same disorder sample. For temperatures below TcT_c but not too low, fast samples (small relaxation times) are clearly correlated with a small value of the largest eigenvalue of the coupling matrix, a large value of the site averaged local field probability distribution at the origin, or a small value of the squared overlap .Withinourlimiteddata,thecorrelationremainsasthesystemsizeincreasesbutbecomeslessclearasthetemperatureisdecreased(thecorrelationwith. Within our limited data, the correlation remains as the system size increases but becomes less clear as the temperature is decreased (the correlation with is more robust) . There is a strong correlation between the values of the relaxation time for two distinct values of the temperature, but this correlation decreases as the system size is increased. This may indicate the onset of temperature chaos

    A numerical study of the overlap probability distribution and its sample-to-sample fluctuations in a mean-field model

    Full text link
    In this paper we study the fluctuations of the probability distributions of the overlap in mean field spin glasses in the presence of a magnetic field on the De Almeida-Thouless line. We find that there is a large tail in the left part of the distribution that is dominated by the contributions of rare samples. Different techniques are used to examine the data and to stress on different aspects of the contribution of rare samples.Comment: 13 pages, 11 figure

    Critical Behavior of Three-Dimensional Disordered Potts Models with Many States

    Get PDF
    We study the 3D Disordered Potts Model with p=5 and p=6. Our numerical simulations (that severely slow down for increasing p) detect a very clear spin glass phase transition. We evaluate the critical exponents and the critical value of the temperature, and we use known results at lower pp values to discuss how they evolve for increasing p. We do not find any sign of the presence of a transition to a ferromagnetic regime.Comment: 9 pages and 9 Postscript figures. Final version published in J. Stat. Mec

    Janus II: a new generation application-driven computer for spin-system simulations

    Get PDF
    This paper describes the architecture, the development and the implementation of Janus II, a new generation application-driven number cruncher optimized for Monte Carlo simulations of spin systems (mainly spin glasses). This domain of computational physics is a recognized grand challenge of high-performance computing: the resources necessary to study in detail theoretical models that can make contact with experimental data are by far beyond those available using commodity computer systems. On the other hand, several specific features of the associated algorithms suggest that unconventional computer architectures, which can be implemented with available electronics technologies, may lead to order of magnitude increases in performance, reducing to acceptable values on human scales the time needed to carry out simulation campaigns that would take centuries on commercially available machines. Janus II is one such machine, recently developed and commissioned, that builds upon and improves on the successful JANUS machine, which has been used for physics since 2008 and is still in operation today. This paper describes in detail the motivations behind the project, the computational requirements, the architecture and the implementation of this new machine and compares its expected performances with those of currently available commercial systems.Comment: 28 pages, 6 figure

    Phase I clinical trial in healthy adults of a nasal vaccine candidate containing recombinant hepatitis B surface and core antigens

    Get PDF
    SummaryBackgroundThe nasal vaccine candidate (NASVAC), comprising hepatitis B virus (HBV) surface (HBsAg) and core antigens (HBcAg), has been shown to be highly immunogenic in animal models.MethodsA phase I double-blinded, placebo-controlled randomized clinical trial was carried out in 19 healthy male adults with no serologic markers of immunity/infection to HBV. This study was aimed at exploring the safety and immunogenic profile of nasal co-administration of both HBV recombinant antigens. The trial was performed according to Good Clinical Practice guidelines. Participants ranged in age from 18 to 45 years and were randomly allocated to receive a mixture of 50ÎŒg HBsAg and 50ÎŒg HBcAg or 0.9% physiologic saline solution, as a placebo, via nasal spray in a five-dose schedule at 0, 7, 15, 30, and 60 days. A total volume of 0.5ml was administered in two dosages of 125ÎŒl per nostril. Adverse events were actively recorded 1h, 6h, 12h, 24h, 48h, 72h, 7 days and 30 days after each dose. Anti-HBs and anti-HBc titers were evaluated using corresponding ELISA kits at days 30 and 90.ResultsThe vaccine candidate was safe and well tolerated. Adverse reactions included sneezing (34.1%), rhinorrhea (12.2%), nasal stuffiness (9.8%), palate itching (9.8%), headache (9.8%), and general malaise (7.3%). These reactions were all self-limiting and mild in intensity. No severe or unexpected events were recorded during the trial. The vaccine elicited anti-HBc seroconversion in 100% of subjects as early as day 30 of the immunization schedule, while a seroprotective anti-HBs titer (≄10IU/l) was at a maximum at day 90 (75%). All subjects in the placebo group remained seronegative during the trial.ConclusionThe HBsAg–HBcAg vaccine candidate was safe, well tolerated and immunogenic in this phase I study in healthy adults. To our knowledge, this is the first demonstration of safety and immunogenicity for a nasal vaccine candidate comprising HBV antigens

    Massively parallel simulations for disordered systems

    Get PDF
    Simulations of systems with quenched disorder are extremely demanding, suffering from the combined effect of slow relaxation and the need of performing the disorder average. As a consequence, new algorithms, improved implementations, and alternative and even purpose-built hardware are often instrumental for conducting meaningful studies of such systems. The ensuing demands regarding hardware availability and code complexity are substantial and sometimes prohibitive. We demonstrate how with a moderate coding effort leaving the overall structure of the simulation code unaltered as compared to a CPU implementation, very significant speed-ups can be achieved from a parallel code on GPU by mainly exploiting the trivial parallelism of the disorder samples and the near-trivial parallelism of the parallel tempering replicas. A combination of this massively parallel implementation with a careful choice of the temperature protocol for parallel tempering as well as efficient cluster updates allows us to equilibrate comparatively large systems with moderate computational resources.Comment: accepted for publication in EPJB, Topical issue - Recent advances in the theory of disordered system

    Trends and outcome of neoadjuvant treatment for rectal cancer: A retrospective analysis and critical assessment of a 10-year prospective national registry on behalf of the Spanish Rectal Cancer Project

    Get PDF
    Introduction: Preoperative treatment and adequate surgery increase local control in rectal cancer. However, modalities and indications for neoadjuvant treatment may be controversial. Aim of this study was to assess the trends of preoperative treatment and outcomes in patients with rectal cancer included in the Rectal Cancer Registry of the Spanish Associations of Surgeons. Method: This is a STROBE-compliant retrospective analysis of a prospective database. All patients operated on with curative intention included in the Rectal Cancer Registry were included. Analyses were performed to compare the use of neoadjuvant/adjuvant treatment in three timeframes: I)2006–2009; II)2010–2013; III)2014–2017. Survival analyses were run for 3-year survival in timeframes I-II. Results: Out of 14, 391 patients, 8871 (61.6%) received neoadjuvant treatment. Long-course chemo/radiotherapy was the most used approach (79.9%), followed by short-course radiotherapy ± chemotherapy (7.6%). The use of neoadjuvant treatment for cancer of the upper third (15-11 cm) increased over time (31.5%vs 34.5%vs 38.6%, p = 0.0018). The complete regression rate slightly increased over time (15.6% vs 16% vs 18.5%; p = 0.0093); the proportion of patients with involved circumferential resection margins (CRM) went down from 8.2% to 7.3%and 5.5% (p = 0.0004). Neoadjuvant treatment significantly decreased positive CRM in lower third tumors (OR 0.71, 0.59–0.87, Cochrane-Mantel-Haenszel P = 0.0008). Most ypN0 patients also received adjuvant therapy. In MR-defined stage III patients, preoperative treatment was associated with significantly longer local-recurrence-free survival (p < 0.0001), and cancer-specific survival (p < 0.0001). The survival benefit was smaller in upper third cancers. Conclusion: There was an increasing trend and a potential overuse of neoadjuvant treatment in cancer of the upper rectum. Most ypN0 patients received postoperative treatment. Involvement of CRM in lower third tumors was reduced after neoadjuvant treatment. Stage III and MRcN + benefited the most

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic
    corecore