97 research outputs found

    Subcutaneously administered dexmedetomidine is efficiently absorbed and is associated with attenuated cardiovascular effects in healthy volunteers

    Get PDF
    Purpose: Palliative care patients often need sedation to alleviate intractable anxiety, stress, and pain. Dexmedetomidine is used for sedation of intensive care patients, but there is no prior information on its subcutaneous (SC) administration, a route that would be favored in palliative care. We compared the pharmacokinetics and cardiovascular, sympatholytic, and sedative effects of SC and intravenously (IV) administered dexmedetomidine in healthy volunteers.Methods: An open two-period, cross-over design with balanced randomization was used. Ten male subjects were randomized to receive 1 ΞΌg/kg dexmedetomidine both IV and SC. Concentrations of dexmedetomidine and catecholamines in plasma were measured. Pharmacokinetic variables were calculated with non-compartmental methods. In addition, cardiovascular and sedative drug effects were monitored.Results: Eight subjects completed both treatment periods. Peak concentrations of dexmedetomidine were observed 15 min after SC administration (median; range 15–240). The mean bioavailability of SC dexmedetomidine was 81% (AUC0-∞ ratio × 100%, range 49–97%). The mean (SD) peak concentration of dexmedetomidine in plasma was 0.3 (0.1) ng/ml, and plasma concentrations associated with sedative effects (i.e., > 0.2 ng/ml) were maintained for 4 h after SC dosing. Plasma noradrenaline concentrations were significantly lower (P Conclusions: Dexmedetomidine is relatively rapidly and efficiently absorbed after SC administration. Subcutaneous dexmedetomidine may be a feasible alternative in palliative sedation, and causes attenuated cardiovascular effects compared to IV administration.</p

    Guide to Understanding Drosophila Models of Neurodegenerative Diseases

    Get PDF
    Demystifying how genetic studies inDrosophila inform human disease conditions, this article highlights two studies that identify genetic modifiers of neurodegeneration

    Effects of vatinoxan on cardiorespiratory function, fecal output and plasma drug concentrations in horses anesthetized with isoflurane and infusion of medetomidine

    Get PDF
    A constant rate infusion (CRI) of medetomidine is used to balance equine inhalation anesthesia, but its cardiovascular side effects are a concern. This experimental crossover study aimed to evaluate the effects of vatinoxan (a peripheral a2-adrenoceptor antagonist) on cardiorespiratory and gastrointestinal function in anesthetized healthy horses. Six horses received medetomidine hydrochloride 7 mu g/kg IV alone (MED) or with vatinoxan hydrochloride 140 mu g/kg IV (MED + V). Anesthesia was induced with midazolam and ketamine and maintained with isoflurane and medetomidine CRI for 60min. Heart rate, carotid and pulmonary arterial pressures, central venous pressure, cardiac output and arterial and mixed venous blood gases were measured. Selected cardiopulmonary parameters were calculated. Plasma drug concentrations were determined. Fecal output was measured over 24h. For statistical comparisons, repeated measures analysis of covariance and paired t-tests were applied. Heart rate decreased slightly from baseline in the MED group. Arterial blood pressures decreased with both treatments, but significantly more dobutamine was needed to maintain normotension with MED + V (P = 0.018). Cardiac index (CI) and oxygen delivery index (DO2I) decreased significantly more with MED, with the largest difference observed at 20min: CI was 39 +/- 2 and 73 +/- 18 (P = 0.009) and DO2I 7.4 +/- 1.2 and 15.3 +/- 4.8 (P = 0.014)mL/min/kg with MED and MED + V, respectively. Fecal output or plasma concentrations of dexmedetomidine did not differ between the treatments. In conclusion, premedication with vatinoxan induced hypotension, thus its use in anesthetized horses warrants further studies. Even though heart rate and arterial blood pressures remained clinically acceptable with MED, cardiac performance and oxygen delivery were lower than with MED + V. (C) 2019 The Authors. Published by Elsevier Ltd.Peer reviewe

    Technology-enabled medication adherence for seniors living in the community: Experiences, lessons, and the road ahead

    Get PDF
    Singapore National Research Foundation; Singapore Ministry of National Developmen

    Predictors of Medication Adherence and Blood Pressure Control among Saudi Hypertensive Patients Attending Primary Care Clinics: A Cross-Sectional Study

    Get PDF
    Purpose To assess the level of medication adherence and to investigate predictors of medication adherence and blood pressure control among hypertensive patients attending primary healthcare clinics in Makkah, Saudi Arabia. Patients and methods Hypertensive patients meeting the eligibility criteria were recruited from eight primary care clinics between January and May 2016 for this study. The patients completed Arabic version of Morisky Medication Adherence Scale (MMAS-8), an eight-item validated, self-reported measure to assess medication adherence. A structured data collection form was used to record patients’ sociodemographic, medical and medication data. Results Two hundred and four patients, of which 71.6% were females, participated in the study. Patients’ mean age was 59.1 (SD 12.2). The mean number of medication used by patients was 4.4 (SD 1.89). More than half (110; 54%) of the patients were non-adherent to their medications (MMAS score 65 years (OR 2.0 [95% CI: 1.0–4.2; P = 0.04]), and being diabetic (OR 0.25 [95% CI: 0.1–0.6; P = 0.04]) were found to be independent predictors of medication adherence. Conclusion Medication adherence is alarmingly low among hypertensive patients attending primary care clinics in Saudi Arabia which may partly explain observed poor blood pressure control. There is a clear need to educate patients about the importance of medication adherence and its impact on improving clinical outcomes. Future research should identify barriers to medication adherence among Saudi hypertensive patients

    The ataxia protein sacsin is a functional co-chaperone that protects against polyglutamine-expanded ataxin-1

    Get PDF
    An extensive protein–protein interaction network has been identified between proteins implicated in inherited ataxias. The protein sacsin, which is mutated in the early-onset neurodegenerative disease autosomal recessive spastic ataxia of Charlevoix-Saguenay, is a node in this interactome. Here, we have established the neuronal expression of sacsin and functionally characterized domains of the 4579 amino acid protein. Sacsin is most highly expressed in large neurons, particularly within brain motor systems, including cerebellar Purkinje cells. Its subcellular localization in SH-SY5Y neuroblastoma cells was predominantly cytoplasmic with a mitochondrial component. We identified a putative ubiquitin-like (UbL) domain at the N-terminus of sacsin and demonstrated an interaction with the proteasome. Furthermore, sacsin contains a predicted J-domain, the defining feature of DnaJ/Hsp40 proteins. Using a bacterial complementation assay, the sacsin J-domain was demonstrated to be functional. The presence of both UbL and J-domains in sacsin suggests that it may integrate the ubiquitin–proteasome system and Hsp70 function to a specific cellular role. The Hsp70 chaperone machinery is an important component of the cellular response towards aggregation prone mutant proteins that are associated with neurodegenerative diseases. We therefore investigated the effects of siRNA-mediated sacsin knockdown on polyglutamine-expanded ataxin-1. Importantly, SACS siRNA did not affect cell viability with GFP-ataxin-1[30Q], but enhanced the toxicity of GFP-ataxin-1[82Q], suggesting that sacsin is protective against mutant ataxin-1. Thus, sacsin is an ataxia protein and a regulator of the Hsp70 chaperone machinery that is implicated in the processing of other ataxia-linked proteins

    Towards actionable knowledge: A systematic analysis of mobile patient portal use

    Get PDF
    As the aging population grows, chronic illness increases, and our healthcare costs sharply increase, patient portals are positioned as a central component of patient engagement through the potential to change the physician-patient relationship and enable chronic disease self-management. A patient’s engagement in their healthcare contributes to improving health outcomes, and information technologies can support health engagement. In this chapter, we extend the existing literature by discovering design gaps for patient portals from a systematic analysis of negative users’ feedback from the actual use of patient portals. Specifically, we adopt a topic modeling approach, latent Dirichlet allocation (LDA) algorithm, to discover design gaps from online low rating user reviews of a common mobile patient portal, EPIC’s mychart. To validate the extracted gaps, we compared the results of LDA analysis with that of human analysis. Overall, the results revealed opportunities to improve collaboration and to enhance the design of portals intended for patient-centered care. Incorporating these changes may enable the technologies to have stronger position to influence health improvement and wellness

    Correlation of Inter-Locus Polyglutamine Toxicity with CAGβ€’CTG Triplet Repeat Expandability and Flanking Genomic DNA GC Content

    Get PDF
    Dynamic expansions of toxic polyglutamine (polyQ)-encoding CAG repeats in ubiquitously expressed, but otherwise unrelated, genes cause a number of late-onset progressive neurodegenerative disorders, including Huntington disease and the spinocerebellar ataxias. As polyQ toxicity in these disorders increases with repeat length, the intergenerational expansion of unstable CAG repeats leads to anticipation, an earlier age-at-onset in successive generations. Crucially, disease associated alleles are also somatically unstable and continue to expand throughout the lifetime of the individual. Interestingly, the inherited polyQ length mediating a specific age-at-onset of symptoms varies markedly between disorders. It is widely assumed that these inter-locus differences in polyQ toxicity are mediated by protein context effects. Previously, we demonstrated that the tendency of expanded CAGβ€’CTG repeats to undergo further intergenerational expansion (their β€˜expandability’) also differs between disorders and these effects are strongly correlated with the GC content of the genomic flanking DNA. Here we show that the inter-locus toxicity of the expanded polyQ tracts of these disorders also correlates with both the expandability of the underlying CAG repeat and the GC content of the genomic DNA flanking sequences. Inter-locus polyQ toxicity does not correlate with properties of the mRNA or protein sequences, with polyQ location within the gene or protein, or steady state transcript levels in the brain. These data suggest that the observed inter-locus differences in polyQ toxicity are not mediated solely by protein context effects, but that genomic context is also important, an effect that may be mediated by modifying the rate at which somatic expansion of the DNA delivers proteins to their cytotoxic state

    FOX-2 Dependent Splicing of Ataxin-2 Transcript Is Affected by Ataxin-1 Overexpression

    Get PDF
    Alternative splicing is a fundamental posttranscriptional mechanism for controlling gene expression, and splicing defects have been linked to various human disorders. The splicing factor FOX-2 is part of a main protein interaction hub in a network related to human inherited ataxias, however, its impact remains to be elucidated. Here, we focused on the reported interaction between FOX-2 and ataxin-1, the disease-causing protein in spinocerebellar ataxia type 1. In this line, we further evaluated this interaction by yeast-2-hybrid analyses and co-immunoprecipitation experiments in mammalian cells. Interestingly, we discovered that FOX-2 localization and splicing activity is affected in the presence of nuclear ataxin-1 inclusions. Moreover, we observed that FOX-2 directly interacts with ataxin-2, a protein modulating spinocerebellar ataxia type 1 pathogenesis. Finally, we provide evidence that splicing of pre-mRNA of ataxin-2 depends on FOX-2 activity, since reduction of FOX-2 levels led to increased skipping of exon 18 in ataxin-2 transcripts. Most striking, we observed that ataxin-1 overexpression has an effect on this splicing event as well. Thus, our results demonstrate that FOX-2 is involved in splicing of ataxin-2 transcripts and that this splicing event is altered by overexpression of ataxin-1

    Conserved Genes Act as Modifiers of Invertebrate SMN Loss of Function Defects

    Get PDF
    Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species
    • …
    corecore