356 research outputs found
From Maximum of Intervisit Times to Starving Random Walks
Very recently, a fundamental observable has been introduced and analyzed to
quantify the exploration of random walks: the time required for a
random walk to find a site that it never visited previously, when the walk has
already visited distinct sites. Here, we tackle the natural issue of the
statistics of , the longest duration out of .
This problem belongs to the active field of extreme value statistics, with the
difficulty that the random variables are both correlated and
non-identically distributed. Beyond this fundamental aspect, we show that the
asymptotic determination of the statistics of finds explicit applications
in foraging theory and allows us to solve the open -dimensional starving
random walk problem, in which each site of a lattice initially contains one
food unit, consumed upon visit by the random walker, which can travel
steps without food before starving. Processes of diverse nature,
including regular diffusion, anomalous diffusion, and diffusion in disordered
media and fractals, share common properties within the same universality
classes
A Coverage Criterion for Spaced Seeds and its Applications to Support Vector Machine String Kernels and k-Mer Distances
Spaced seeds have been recently shown to not only detect more alignments, but
also to give a more accurate measure of phylogenetic distances (Boden et al.,
2013, Horwege et al., 2014, Leimeister et al., 2014), and to provide a lower
misclassification rate when used with Support Vector Machines (SVMs) (On-odera
and Shibuya, 2013), We confirm by independent experiments these two results,
and propose in this article to use a coverage criterion (Benson and Mak, 2008,
Martin, 2013, Martin and No{\'e}, 2014), to measure the seed efficiency in both
cases in order to design better seed patterns. We show first how this coverage
criterion can be directly measured by a full automaton-based approach. We then
illustrate how this criterion performs when compared with two other criteria
frequently used, namely the single-hit and multiple-hit criteria, through
correlation coefficients with the correct classification/the true distance. At
the end, for alignment-free distances, we propose an extension by adopting the
coverage criterion, show how it performs, and indicate how it can be
efficiently computed.Comment: http://online.liebertpub.com/doi/abs/10.1089/cmb.2014.017
Supergravity Higgs Inflation and Shift Symmetry in Electroweak Theory
We present a model of inflation in a supergravity framework in the Einstein
frame where the Higgs field of the next to minimal supersymmetric standard
model (NMSSM) plays the role of the inflaton. Previous attempts which assumed
non-minimal coupling to gravity failed due to a tachyonic instability of the
singlet field during inflation. A canonical K\"{a}hler potential with
\textit{minimal coupling} to gravity can resolve the tachyonic instability but
runs into the -problem. We suggest a model which is free of the
-problem due to an additional coupling in the K\"{a}hler potential which
is allowed by the Standard Model gauge group. This induces directions in the
potential which we call K-flat. For a certain value of the new coupling in the
(N)MSSM, the K\"{a}hler potential is special, because it can be associated with
a certain shift symmetry for the Higgs doublets, a generalization of the shift
symmetry for singlets in earlier models. We find that K-flat direction has
This shift symmetry is broken by interactions coming from
the superpotential and gauge fields. This direction fails to produce successful
inflation in the MSSM but produces a viable model in the NMSSM. The model is
specifically interesting in the Peccei-Quinn (PQ) limit of the NMSSM. In this
limit the model can be confirmed or ruled-out not just by cosmic microwave
background observations but also by axion searches.Comment: matches the published version at JCA
The Influence of Spatial Resolution on Nonlinear Force-Free Modeling
The nonlinear force-free field (NLFFF) model is often used to describe the
solar coronal magnetic field, however a series of earlier studies revealed
difficulties in the numerical solution of the model in application to
photospheric boundary data. We investigate the sensitivity of the modeling to
the spatial resolution of the boundary data, by applying multiple codes that
numerically solve the NLFFF model to a sequence of vector magnetogram data at
different resolutions, prepared from a single Hinode/SOT-SP scan of NOAA Active
Region 10978 on 2007 December 13. We analyze the resulting energies and
relative magnetic helicities, employ a Helmholtz decomposition to characterize
divergence errors, and quantify changes made by the codes to the vector
magnetogram boundary data in order to be compatible with the force-free model.
This study shows that NLFFF modeling results depend quantitatively on the
spatial resolution of the input boundary data, and that using more highly
resolved boundary data yields more self-consistent results. The free energies
of the resulting solutions generally trend higher with increasing resolution,
while relative magnetic helicity values vary significantly between resolutions
for all methods. All methods require changing the horizontal components, and
for some methods also the vertical components, of the vector magnetogram
boundary field in excess of nominal uncertainties in the data. The solutions
produced by the various methods are significantly different at each resolution
level. We continue to recommend verifying agreement between the modeled field
lines and corresponding coronal loop images before any NLFFF model is used in a
scientific setting.Comment: Accepted to ApJ; comments/corrections to this article are welcome via
e-mail, even after publicatio
String Matching and 1d Lattice Gases
We calculate the probability distributions for the number of occurrences
of a given letter word in a random string of letters. Analytical
expressions for the distribution are known for the asymptotic regimes (i) (Gaussian) and such that is finite
(Compound Poisson). However, it is known that these distributions do now work
well in the intermediate regime . We show that the
problem of calculating the string matching probability can be cast into a
determining the configurational partition function of a 1d lattice gas with
interacting particles so that the matching probability becomes the
grand-partition sum of the lattice gas, with the number of particles
corresponding to the number of matches. We perform a virial expansion of the
effective equation of state and obtain the probability distribution. Our result
reproduces the behavior of the distribution in all regimes. We are also able to
show analytically how the limiting distributions arise. Our analysis builds on
the fact that the effective interactions between the particles consist of a
relatively strong core of size , the word length, followed by a weak,
exponentially decaying tail. We find that the asymptotic regimes correspond to
the case where the tail of the interactions can be neglected, while in the
intermediate regime they need to be kept in the analysis. Our results are
readily generalized to the case where the random strings are generated by more
complicated stochastic processes such as a non-uniform letter probability
distribution or Markov chains. We show that in these cases the tails of the
effective interactions can be made even more dominant rendering thus the
asymptotic approximations less accurate in such a regime.Comment: 44 pages and 8 figures. Major revision of previous version. The
lattice gas analogy has been worked out in full, including virial expansion
and equation of state. This constitutes the main part of the paper now.
Connections with existing work is made and references should be up to date
now. To be submitted for publicatio
Recommended from our members
“I’ve got somebody there, someone cares”: what support is most valued following a stroke?
Purpose: There is often a need for increased support following a stroke. This study explored what types of support are provided by different network members, and what support functions are most valued.
Methods: Adults with first stroke were recruited from a stroke unit, and participated in in-depth interviews 8-15 months post stroke. Framework Analysis was used to build thematic and explanatory accounts of the data.
Results: Twenty-nine participants took part. Main themes to emerge were: the spouse was the most important provider of support; children were a relatively stable source of support, although many participants expressed reservations about worrying a child; relatives and friends typically provided social companionship and emotional support rather than on-going practical support. The only universally valued support function was the sense that someone was concerned and cared. Other valued functions were: social companionship including everyday social ‘chit chat’; practical support provided sensitively; and, for many, sharing worries and sensitive encouragement. The manner and context in which support was provided was important: support was easiest to receive when it communicated concern, and was part of a reciprocal, caring relationship.
Conclusions: As well as measuring supportive acts, researchers and clinicians should consider the manner and context of support
Sparkling extreme-ultraviolet bright dots observed with Hi-C
Observing the Sun at high time and spatial scales is a step toward understanding the finest and fundamental scales of heating events in the solar corona. The high-resolution coronal (Hi-C) instrument has provided the highest spatial and temporal resolution images of the solar corona in the EUV wavelength range to date. Hi-C observed an active region on 2012 July 11 that exhibits several interesting features in the EUV line at 193 Å. One of them is the existence of short, small brightenings "sparkling" at the edge of the active region; we call these EUV bright dots (EBDs). Individual EBDs have a characteristic duration of 25 s with a characteristic length of 680 km. These brightenings are not fully resolved by the SDO/AIA instrument at the same wavelength; however, they can be identified with respect to the Hi-C location of the EBDs. In addition, EBDs are seen in other chromospheric/coronal channels of SDO/AIA, which suggests a temperature between 0.5 and 1.5 MK. Based on their frequency in the Hi-C time series, we define four different categories of EBDs: single peak, double peak, long duration, and bursty. Based on a potential field extrapolation from an SDO/HMI magnetogram, the EBDs appear at the footpoints of large-scale, trans-equatorial coronal loops. The Hi-C observations provide the first evidence of small-scale EUV heating events at the base of these coronal loops, which have a free magnetic energy of the order of 1026 erg. © 2014. The American Astronomical Society. All rights reserved
A Method for Data-Driven Simulations of Evolving Solar Active Regions
We present a method for performing data-driven simulations of solar active
region formation and evolution. The approach is based on magnetofriction, which
evolves the induction equation assuming the plasma velocity is proportional to
the Lorentz force. The simulations of active region coronal field are driven by
temporal sequences of photospheric magnetograms from the Helioseismic Magnetic
Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO). Under
certain conditions, the data-driven simulations produce flux ropes that are
ejected from the modeled active region due to loss of equilibrium. Following
the ejection of flux ropes, we find an enhancement of the photospheric
horizontal field near the polarity inversion line. We also present a method for
the synthesis of mock coronal images based on a proxy emissivity calculated
from the current density distribution in the model. This method yields mock
coronal images that are somewhat reminiscent of images of active regions taken
by instruments such as SDO's Atmospheric Imaging Assembly (AIA) at extreme
ultraviolet wavelengths.Comment: Accepted to ApJ; comments/questions related to this article are
welcome via e-mail, even after publicatio
Bayesian Centroid Estimation for Motif Discovery
Biological sequences may contain patterns that are signal important
biomolecular functions; a classical example is regulation of gene expression by
transcription factors that bind to specific patterns in genomic promoter
regions. In motif discovery we are given a set of sequences that share a common
motif and aim to identify not only the motif composition, but also the binding
sites in each sequence of the set. We present a Bayesian model that is an
extended version of the model adopted by the Gibbs motif sampler, and propose a
new centroid estimator that arises from a refined and meaningful loss function
for binding site inference. We discuss the main advantages of centroid
estimation for motif discovery, including computational convenience, and how
its principled derivation offers further insights about the posterior
distribution of binding site configurations. We also illustrate, using
simulated and real datasets, that the centroid estimator can differ from the
maximum a posteriori estimator.Comment: 24 pages, 9 figure
- …