54 research outputs found
Microphysical and thermodynamic phase analyses of Arctic low-level clouds measured above the sea ice and the open ocean in spring and summer
Airborne in situ cloud measurements were carried out over the northern Fram Strait between Greenland and Svalbard in spring 2019 and summer 2020. In total, 811 min of low-level cloud observations were performed during 20 research flights above the sea ice and the open Arctic ocean with the Polar 5 research aircraft of the Alfred Wegener Institute. Here, we combine the comprehensive in situ cloud data to investigate the
distributions of particle number concentration N, effective diameter Deff, and cloud water content CWC (liquid and ice) of Arctic clouds below 500 m altitude, measured at latitudes between 76 and 83⊠N. We developed a method to quantitatively derive the occurrence probability of their thermodynamic phase from the combination of microphysical cloud probe and Polar Nephelometer data. Finally, we assess changes in cloud microphysics
and cloud phase related to ambient meteorological conditions in spring and summer and address effects of the sea ice and open-ocean surface conditions. We find median N from 0.2 to 51.7 cmâ3 and about 2 orders of magnitude higher N for mainly liquid clouds in summer compared to ice and mixed-phase clouds measured in spring. A southerly flow from the sea ice in cold air outbreaks dominates cloud formation processes at temperatures mostly below â10 âŠC in spring, while northerly warm air intrusions favor the formation of liquid clouds at warmer temperatures in summer. Our results show slightly higher N in clouds over the sea ice compared to the open ocean, indicating enhanced cloud formation processes over the sea ice. The median CWC is higher in summer (0.16 gmâ3 ) than in spring (0.06 gmâ3 ), as this is dominated by the available atmospheric water content and the temperatures at cloud formation level. We find large differences in the particle sizes in spring and summer and an impact of the surface conditions, which modifies the heat and moisture fluxes in the boundary layer. By combining microphysical cloud data with thermodynamic phase information from the Polar Nephelometer, we find mixed-phase clouds to be the dominant thermodynamic cloud phase in spring, with a frequency of occurrence of 61 % over the sea ice and 66 % over the ocean. Pure ice clouds exist almost exclusively over the open ocean in spring, and in summer the cloud particles are most likely in the liquid water state
Recommended from our members
A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign
The Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign was carried out north-west of Svalbard (Norway) between 23 May and 6 June 2017. The objective of ACLOUD was to study Arctic boundary layer and mid-level clouds and their role in Arctic amplification. Two research aircraft (Polar 5 and 6) jointly performed 22 research flights over the transition zone between open ocean and closed sea ice. Both aircraft were equipped with identical instrumentation for measurements of basic meteorological parameters, as well as for turbulent and radiative energy fluxes. In addition, on Polar 5 active and passive remote sensing instruments were installed, while Polar 6 operated in situ instruments to characterize cloud and aerosol particles as well as trace gases. A detailed overview of the specifications, data processing, and data quality is provided here. It is shown that the scientific analysis of the ACLOUD data benefits from the coordinated operation of both aircraft. By combining the cloud remote sensing techniques operated on Polar 5, the synergy of multi-instrument cloud retrieval is illustrated. The remote sensing methods were validated using truly collocated in situ and remote sensing observations. The data of identical instruments operated on both aircraft were merged to extend the spatial coverage of mean atmospheric quantities and turbulent and radiative flux measurement. Therefore, the data set of the ACLOUD campaign provides comprehensive in situ and remote sensing observations characterizing the cloudy Arctic atmosphere. All processed, calibrated, and validated data are published in the World Data Center PANGAEA as instrument-separated data subsets (Ehrlich et al., 2019b, https://doi.org/10.1594/PANGAEA.902603)
Aerosol influences on low-level clouds in the West African monsoon
Low-level clouds (LLC) cover a wide area of southern West Africa (SWA) during the summer monsoon months, and have an important cooling effect on the regional climate. Previous studies of these clouds have focused on modelling and remote sensing via satellite. We present the first comprehensive set of regional, in situ measurements of cloud microphysics, taken during June â July 2016, as part of the DACCIWA (Dynamics-Aerosol-Chemistry-Clouds Interactions in West Africa) campaign, assessing spatial and temporal variation in the properties of these clouds.
LLC developed overnight and mean cloud cover peaked a few hundred kilometres inland around 10:00 local solar time (LST), before clouds began to dissipate and convection intensified in the afternoon. Additional sea breeze clouds developed near the coast in the late morning, reaching a maximum extent around 12:00âLST. Regional variation in LLC cover was largely determined by the modulation of the cool maritime inflow by the local orography, with peaks on the upwind side of hills and minima on the leeward sides. In the broad-scale cloud field, no lasting impacts related to anthropogenic aerosol were observed downwind of major population centres.
The boundary layer cloud drop number concentration (CDNC) was locally variable inland, ranging from 200 to 840âcmâ3 (10th and 90th percentiles at standard temperature and pressure), but showed no systematic regional variations. Enhancements were seen in pollution plumes from the coastal cities, but were not statistically significant across the region. The majority of accumulation mode aerosols, and therefore cloud condensation nuclei, were from ubiquitous biomass burning smoke transported from the southern hemisphere. Consequently, all clouds measured (inland and offshore) had significantly higher CDNC and lower effective radius than clouds over the remote south Atlantic from literature.
A parcel model sensitivity analysis showed that doubling or halving local emissions only changed the calculated CDNC by 13â22â%, as the high background meant local emissions were a small fraction of total aerosol. As the population of SWA grows, local emissions are expected to rise. Biomass burning smoke transported from the southern hemisphere is likely to dampen any effect of these increased local emissions on cloud-aerosol interactions. An integrative analysis between local pollution and Central African biomass burning emissions must be considered when predicting anthropogenic impacts on the regional cloud field during the West African monsoon
MOSAiC-ACA and AFLUX - Arctic airborne campaigns characterizing the exit area of MOSAiC
Two airborne field campaigns focusing on observations of Arctic mixed-phase clouds and boundary layer processes and their role with
respect to Arctic amplification have been carried out in spring 2019 and late summer 2020 over the Fram Strait northwest of Svalbard.
The latter campaign was closely connected to the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)
expedition. Comprehensive data sets of the cloudy Arctic atmosphere have been collected by operating remote sensing instruments, insitu probes, instruments for the measurement of turbulent fluxes of energy and momentum, and dropsondes on board the AWI research
aircraft Polar 5. In total, 24 flights with 111 flight hours have been performed over open ocean, the marginal sea ice zone, and sea ice. The
data sets follow documented methods and quality assurance and are suited for studies on Arctic mixed-phase clouds and their
transformation processes, for studies with a focus on Arctic boundary layer processes, and for satellite validation application
A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign
The Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) cam-
paign was carried out north-west of Svalbard (Norway) between 23 May and 6 June 2017. The objective of
ACLOUD was to study Arctic boundary layer and mid-level clouds and their role in Arctic amplification. Two
research aircraft (Polar 5 and 6) jointly performed 22 research flights over the transition zone between open
ocean and closed sea ice. Both aircraft were equipped with identical instrumentation for measurements of basic
meteorological parameters, as well as for turbulent and radiative energy fluxes. In addition, on Polar 5 active
and passive remote sensing instruments were installed, while Polar 6 operated in situ instruments to characterize
cloud and aerosol particles as well as trace gases. A detailed overview of the specifications, data processing,
and data quality is provided here. It is shown that the scientific analysis of the ACLOUD data benefits from the
coordinated operation of both aircraft. By combining the cloud remote sensing techniques operated on Polar 5,
the synergy of multi-instrument cloud retrieval is illustrated. The remote sensing methods were validated us-
ing truly collocated in situ and remote sensing observations. The data of identical instruments operated on both
aircraft were merged to extend the spatial coverage of mean atmospheric quantities and turbulent and radiative
flux measurement. Therefore, the data set of the ACLOUD campaign provides comprehensive in situ and remote
sensing observations characterizing the cloudy Arctic atmosphere. All processed, calibrated, and validated data
are published in the World Data Center PANGAEA as instrument-separated data subsets (Ehrlich et al., 2019b,
https://doi.org/10.1594/PANGAEA.902603)
Virtualia 2016. La réalité virtuelle au service de la recherche: Actes du séminaire organisé par le CIREVE à Caen (19 octobre 2016),
International audienceLe sĂ©minaire Virtualia est nĂ© en 2006 en mĂȘme temps que le Centre Interdisciplinaire de RĂ©alitĂ© Virtuelle (CIREVE) de lâUniversitĂ© de Caen Normandie. Son objectif est de permettre aux Ă©quipes associĂ©es au CIREVE dâexposer leurs mĂ©thodologies et les rĂ©sultats de leurs travaux dans le domaine de la RĂ©alitĂ© Virtuelle, tout en sâouvrant Ă des communications extĂ©rieures. Il a connu quatre Ă©ditions de 2006 Ă 2009.2016 fut lâoccasion de relancer VIRTUALIA et de concrĂ©tiser le partenariat avec les UniversitĂ©s de Rouen et du Havre dans le cadre de la COMUE. Une Structure FĂ©dĂ©rative de Recherche « CIREVE » est en effet en cours de labellisation au sein de Normandie UniversitĂ©. 2016 est Ă©galement une annĂ©e importante car elle marque Ă la fois le dixiĂšme anniversaire du CIREVE et la finalisation dâune plate-forme de rĂ©alitĂ© virtuelle normande, unique en son genre sur le territoire français. Elle est composĂ©e dâune salle immersive quatre faces de 45 m2, Ă©quipĂ©e dâun tapis roulant particuliĂšrement adaptĂ© pour lâanalyse de la marche en temps rĂ©el (GRAIL de Motek Medical). Les calculateurs de cette salle immersive sont mutualisĂ©s avec un amphithĂ©Ăątre attenant de 150 places, de maniĂšre que les expĂ©rimentations effectuĂ©es avec un sujet unique dans la salle immersive puissent ĂȘtre suivies par un auditoire nombreux (besoins de formation notamment). Les Ă©quipes utilisent le matĂ©riel au fur et Ă mesure des dĂ©veloppements informatiques et de nouveaux protocoles dâexpĂ©rimentation germent dans lâesprit des chercheurs qui voient dans la rĂ©alitĂ© virtuelle des possibilitĂ©s de tests jamais atteintes.Une centaine de chercheurs utilise rĂ©guliĂšrement le plateau technique CIREVE, dans des visĂ©es de recherche qui leur sont propres. Il est toutefois apparu quâun certain nombre de problĂ©matiques concernaient toutes les disciplines et quâune partie de la rĂ©flexion sur les mondes virtuels pouvait ĂȘtre mutualisĂ©e. Le sĂ©minaire VIRTUALIA permet dâoffrir un espace de rencontre Ă ces chercheurs, issus dâhorizons diffĂ©rents, pour discuter de lâutilisation de lâoutil dâun point de vue Ă©pistĂ©mologique. Il est par exemple capital de sâinterroger sur la notion de prĂ©sence. Le sujet se comporte-il de la mĂȘme façon dans lâenvironnement virtuel et dans le monde rĂ©el ? Les chemins de circulation choisis dans le modĂšle virtuel sont-ils les mĂȘmes que ceux qui seraient empruntĂ©s en rĂ©alitĂ© ? Les conclusions Ă©tablies dans le modĂšle virtuel sont-elles directement transposables Ă la rĂ©alitĂ© ? Un des enjeux du travail est dâĂ©valuer la pertinence subjective des modĂšles virtuels, ce qui est capital avant de gĂ©nĂ©raliser leur utilisation dans des actions de formation par exemple. Lâutilisation dâune technologie nâest jamais complĂštement neutre. Dans le cadre des mondes virtuels, lâinteraction de lâhomme avec le monde de synthĂšse nâest possible quâau travers de logiciels et dâinterfaces matĂ©rielles. Il faut sâassurer que les processus cognitifs soient adĂ©quats avant de sâinterroger sur le rĂ©sultat des simulations. Naturellement, le sĂ©minaire permet Ă©galement Ă chaque discipline dâexposer les rĂ©sultats des derniĂšres recherches rĂ©alisĂ©es grĂące Ă la rĂ©alitĂ© virtuelle.Les domaines scientifiques concernĂ©s par la rĂ©alitĂ© virtuelle sont multiples : les civilisations et les patrimoines culturels, la mĂ©decine, les neurosciences, la psychologie, les sciences du mouvement et du sport, lâingĂ©nierie, lâinformatique. LâUniversitĂ© de Caen Normandie Ă©tant pluridisciplinaire, le spectre des utilisations est trĂšs large. Elles se rĂ©partissent en trois axes principaux et un axe en Ă©mergence :LA REPRĂSENTATION : la rĂ©alitĂ© virtuelle permet de reprĂ©senter et de visualiser, interactivement et en trois dimensions, des environnements disparus, dĂ©gradĂ©s, inaccessibles, ou des environnements futurs.Domaines concernĂ©s : civilisations, patrimoine, linguistique...L'EXPĂRIMENTATION : en permettant d'interagir en temps rĂ©el avec un monde numĂ©rique 3D, la rĂ©alitĂ© virtuelle offre de nouvelles perspectives d'expĂ©rimentations dans des environnements de plus en plus proches du rĂ©el et en mĂȘme temps parfaitement contrĂŽlables.Domaines concernĂ©s : santĂ©, neuropsychologie, psychologie, activitĂ©s physiques et sportives...LA CREATION ET LE DEVELOPPEMENT DâOUTILS : les informaticiens crĂ©ent et testent des applications concernant les mĂ©thodes de navigation en monde virtuel, de restitution de la rĂ©alitĂ©.Domaine concernĂ© : informatique.LA FORMATION (axe en Ă©mergence) : par la reprĂ©sentation de la connaissance, par les diverses possibilitĂ©s d'expĂ©rimentation, la rĂ©alitĂ© virtuelle est un formidable outil de formation.Domaines concernĂ©s : sciences du langage, mĂ©decine, informatique (serious game, simulation...).Une partie importante de la rĂ©flexion dĂ©veloppĂ©e lors du sĂ©minaire Virtualia 2016 a Ă©tĂ© consacrĂ©e aux enjeux sociĂ©taux liĂ©s Ă la rĂ©alitĂ© virtuelle : notions de mĂ©moire, dâapprentissage des gestes techniques, dâĂȘtre humain « augmentĂ© » etc. Les articles publiĂ©s attestent du savoir-faire, bien rĂ©el cette fois, que le CIREVE a acquis en termes de crĂ©ation de mondes virtuels pour reprĂ©senter, expĂ©rimenter et former. La publication des actes du sĂ©minaire Virtualia vise Ă mettre en lumiĂšre des recherches particuliĂšrement innovantes qui sâeffectuent dans un cadre technologique exceptionnel.- S. Madeleine, Virtualia 2016. Introduction (et direction de l'Ă©dition)- J. Grieu, F. Lecroq, Th. Galinho, H. Boukachour, Environnements industriels virtualisĂ©s et processus dâapprentissage- Ph. Brunet, J. Dehut, Images 3D et humanitĂ©s numĂ©riques : modĂ©lisation et restitution du geste thĂ©Ăątral- G. Lecouvey, J. Gonneaud, N. Legrand, G. Rauchs, F. Eustache, B. Desgranges, RĂ©alitĂ© virtuelle et mĂ©moire- N. Benguigui, C. Mandil, M. Mallek, L. Lejeune, R. Thouvarecq, Ătude des liens entre perception et action dans des environnements virtuels- E.-G. Dupuy, A. Maneuvrier, E. Vlamynck, S. Besnard, B. Bienvenu, L.-M. Decker, Le syndrome dâEhlers-Danlos type hypermobile : Ă©volution des stratĂ©gies posturales en rĂ©ponse Ă un programme de rĂ©Ă©ducation Ă visĂ©e somesthĂ©sique- C. Weismann-Arcache, RĂ©alitĂ© virtuelle et humain augmentĂ© : subjectivation, dĂ©subjectivation ?- L. Haddouk, RĂ©alitĂ© psychique en visioconsultatio
Generation of the Brucella melitensis ORFeome version 1.1.
The bacteria of the Brucella genus are responsible for a worldwide zoonosis called brucellosis. They belong to the alpha-proteobacteria group, as many other bacteria that live in close association with a eukaryotic host. Importantly, the Brucellae are mainly intracellular pathogens, and the molecular mechanisms of their virulence are still poorly understood. Using the complete genome sequence of Brucella melitensis, we generated a database of protein-coding open reading frames (ORFs) and constructed an ORFeome library of 3091 Gateway Entry clones, each containing a defined ORF. This first version of the Brucella ORFeome (v1.1) provides the coding sequences in a user-friendly format amenable to high-throughput functional genomic and proteomic experiments, as the ORFs are conveniently transferable from the Entry clones to various Expression vectors by recombinational cloning. The cloning of the Brucella ORFeome v1.1 should help to provide a better understanding of the molecular mechanisms of virulence, including the identification of bacterial protein-protein interactions, but also interactions between bacterial effectors and their host's targets
Etude de l'activation des noyaux de condensation (mesure, analyse et développement instrumental)
CLERMONT FD-BCIU Sci.et Tech. (630142101) / SudocSudocFranceF
Résultats préliminaires des arthroplasties totales de hanche de premiÚre intention avec une tige courte métaphysaire sans extension diaphysaire
ANGERS-BU MĂ©decine-Pharmacie (490072105) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF
- âŠ