5 research outputs found

    Estimation of Biomass and N Uptake in Different Winter Cover Crops from UAV-Based Multispectral Canopy Reflectance Data

    Get PDF
    Cover crops are known to provide beneficial effects to agricultural systems such as a reduction in nitrate leaching, erosion control, and an increase in soil organic matter. The monitoring of cover crops’ growth (e.g., green area index (GAI), nitrogen (N) uptake, or dry matter (DM)) using remote sensing techniques allows us to identify the physiological processes involved and to optimise management decisions. Based on the data of a two-year trial (2018, 2019) in Kiel, Northern Germany, the multispectral sensor Sequoia (Parrot) was calibrated to the selected parameters of the winter cover crops oilseed radish, saia oat, spring vetch, and winter rye as sole cover crops and combined in mixtures. Two simple ratios (SRred, SRred edge) and two normalised difference indices (NDred, NDred edge) were calculated and tested for their predicting power. Furthermore, the advantage of the species/mixture–individual compared to the universal models was analysed. SRred best predicted GAI, DM, and N uptake (R2: 0.60, 0.53, 0.45, respectively) in a universal model approach. The canopy parameters of saia oat and spring vetch were estimated by species–individual models, achieving a higher R2 than with the universal model. Comparing mixture–individual models to the universal model revealed low relative error differences below 3%. The findings of the current study serve as a tool for the rapid and inexpensive estimation of cover crops’ canopy parameters that determine environmental services

    Nitrification inhibitors reduce N2O emissions induced by application of biogas digestate to oilseed rape

    Get PDF
    Winter oilseed rape (WOSR) is the major oil crop cultivated in Europe and the most important feedstock for biodiesel. Up to 90% of the greenhouse gas (GHG) emissions from biodiesel production can occur during oilseed rape cultivation. Therefore, mitigation strategies are required and need to focus on direct nitrous oxide (N2O) emission as one of the largest GHG contributors in biodiesel production. Earlier studies show that nitrification inhibitors (NIs) can reduce N2O emissions derived from N-fertilization. Since information on the effect of biogas digestates with or without NIs on N2O emissions from WOSR fields is scarce, the aim of this study was to evaluate their effects on N2O emissions, mineral N dynamics, and oil yield in WOSR production fertilized with digestate. The study was conducted at five sites across Germany over three years resulting in 15 full site-years data sets. Across all sites and years, N2O emission from WOSR fertilized with biogas digestate (180 kg NH4+-N ha−1yr−1) ranged between 0.2 and 3.5 kg N2O–N ha−1 yr−1. Due to the reduction of the nitrate concentrations following digestate application, application of NI significantly reduced annual N2O emission by 36%. Our results demonstrate that NI can be an effective measure for reducing N2O emissions from digestate application, but its effectiveness depends on soil and weather conditions, and ultimately on the site-specific potential for N2O production and release. There was no effect of NI application on grain and oil yield.Bundesministerium fĂŒr ErnĂ€hrung und Landwirtschaft (DE)UniversitĂ€t Hohenheim (3153)Peer Reviewe

    A survey of Twitter research: Data model, graph structure, sentiment analysis and attacks

    No full text
    corecore