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Abstract: Cover crops are known to provide beneficial effects to agricultural systems such as a
reduction in nitrate leaching, erosion control, and an increase in soil organic matter. The monitoring
of cover crops’ growth (e.g., green area index (GAI), nitrogen (N) uptake, or dry matter (DM)) using
remote sensing techniques allows us to identify the physiological processes involved and to optimise
management decisions. Based on the data of a two-year trial (2018, 2019) in Kiel, Northern Germany,
the multispectral sensor Sequoia (Parrot) was calibrated to the selected parameters of the winter
cover crops oilseed radish, saia oat, spring vetch, and winter rye as sole cover crops and combined
in mixtures. Two simple ratios (SRred, SRred edge) and two normalised difference indices (NDred,
NDred edge) were calculated and tested for their predicting power. Furthermore, the advantage of the
species/mixture–individual compared to the universal models was analysed. SRred best predicted
GAI, DM, and N uptake (R2: 0.60, 0.53, 0.45, respectively) in a universal model approach. The canopy
parameters of saia oat and spring vetch were estimated by species–individual models, achieving a
higher R2 than with the universal model. Comparing mixture–individual models to the universal
model revealed low relative error differences below 3%. The findings of the current study serve as
a tool for the rapid and inexpensive estimation of cover crops’ canopy parameters that determine
environmental services.

Keywords: remote sensing; Parrot Sequoia; catch crops; sensor calibration; pure and mixed
canopies; NDVI

1. Introduction

Cover crops have gained importance during the last decade, as they provide ecosystem
services such as a reduction in nitrate leaching, erosion control, and an increase in soil or-
ganic matter (SOM) [1–3]. Implementing incentives for growing winter cover crops within
the common agricultural policy of the European union has encouraged their widespread
cultivation [4]. Closing the nitrogen (N) cycle of arable cropping systems is one of the
most relevant advantages of cover crops under European conditions. By storing N in the
above- and below-ground biomass over winter months, cover crops prevent N leaching
losses [1,5–8]. A recent meta-analysis estimated a global reduction in N leaching by 69 %
across all species compared to fallow [3]. After termination, N from cover crop biomass
might be supplied to succeeding spring cash crops, i.e., maize. The amount of additional
N supply to subsequent crops strongly depends on the total N amount, the chemical
composition (C/N ratio), and on the duration of decomposition and the resulting min-
eralisation/immobilisation of N [5]. For cover crop residues with wide C/N ratios, the
subsequent N supply can be delayed or reduced [8,9]. Recently, cover crops cultivated as
mixtures have received wider recognition in order to provide more diversity in agricultural
land and to combine different functional traits in a beneficial way [10,11].

The application of remote sensing techniques in agricultural science and practice is be-
coming increasingly important. The monitoring of canopy characteristics such as the green
area index (GAI), N uptake, or dry matter (DM) accumulation during the vegetation period

Remote Sens. 2022, 14, 4525. https://doi.org/10.3390/rs14184525 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14184525
https://doi.org/10.3390/rs14184525
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-8099-6842
https://orcid.org/0000-0002-5317-7745
https://orcid.org/0000-0003-2873-2425
https://doi.org/10.3390/rs14184525
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14184525?type=check_update&version=2


Remote Sens. 2022, 14, 4525 2 of 17

is of major interest to understand physiological processes and to further derive manage-
ment decisions. Many approaches have been developed for yield prediction, phenotyping,
and land use monitoring, or to estimate further derived ecosystem services [12–15]. Spectral
data are either provided by earth-orbiting satellites such as Landsat or Sentinel [16] or can
be assessed with multispectral or hyperspectral sensors from handheld devices [17,18] or
mounted on an unmanned airborne vehicle (UAV) [15]. The reflectance behaviour of cash
crops, such as maize, soybean, or wheat, has been well studied over the past decades, e.g.,
by Gitelson et al. [17,19,20] and Bukowiecki et al. [15]. However, few authors have studied
cover crops using satellite imagery to determine the current growing area and biomass
accumulation of cover crops on a large scale [21,22]. Hively et al. [14] evaluated the N
uptake of cover crops, combining on-field destructive plant sampling with hyperspectral
measurements and satellite image analysis. Prabhakara et al. [23] found a linear relation-
ship between the normalised difference vegetation index (NDred, commonly known as
NDVI) and percent groundcover of six winter cover crop species at the east coast of the
United States using a handheld multispectral radiometer. However, so far, no study to
our knowledge has estimated the canopy parameters of cover crops on a higher resolution
using UAV-based multispectral sensors.

The GAI is a canopy parameter that is directly correlated with the chlorophyll amount
and, consequently, can be derived through the spectral reflectance of specific wavelengths.
Successful estimates of GAI through remote sensing techniques have been achieved, for
example, by Kira et al. [24] for maize and soybean crops using hyperspectral data and
by Bukowiecki et al. [15] for wheat with UAV-based multispectral data. Further parame-
ters such as DM and N uptake are regarded as “secondary variables” by Weiss et al. [12].
Compared to the “primary variable” GAI or fraction of photosynthetically active radi-
ation (FPAR), these are not directly correlated to spectral reflectance. Weiss et al. [12]
recommended the estimation of “secondary variables” based on knowledge about the
physiological dynamics in relation to “primary variables”. However, other authors have
estimated additional “secondary” canopy parameters empirically, as well. For example,
Tucker et al. [18] achieved an R2 of 0.86 after deriving the biomass of winter wheat directly
from spectral reflectance data using a handheld radiometer.

Canopy reflectance within the spectrum of visual light is the response of the chloro-
phyll content of leaves. More precisely, green light is reflected by the leaves while red light
is absorbed by the chloroplasts used for photosynthesis, and is therefore informative about
the chlorophyll abundance of the canopy [25,26]. Within near infrared (NIR) wavelengths,
reflection reaches higher ranges and delivers structural information about the canopy (leaf
angle, thickness, canopy architecture) [24,27]. Another interesting area of wavelengths
within the photosynthetic spectrum is the red edge (RE) band, which records the maximum
slope in the reflectance spectra and is sensitive to the chlorophyll content of a plant [20,28].
A widespread approach used to combine these informative bands and further increase the
contrast in the reflection in NIR and the absorption in red is the computation of a vegetation
index (VI) [29]. The most common indices are the normalised difference vegetation index
(NDred, commonly known as NDVI [30]) and the simple ratio [31] that is based on red light
and NIR reflection. Both VIs can be modified by replacing the red light reflectance with the
reflection at RE to increase precision [24,27].

Different canopies show variable reflectance behaviour; hence, the estimations pro-
duced by species–individual models tend to be more precise than universal models [27].
Another challenging aspect is the common strategy used to cultivate cover crops as the mix-
tures of several species for increasing environmental services in an agricultural system [32].
Due to the expected heterogenous spectral response from different species as well as from
different mixtures, a comprehensive comparison of universal and individual models seems
necessary for winter cover crops. Another challenge is the season in which cover crops are
grown. Due to flat sun angles, radiation incidence is reduced in the late autumn and winter
months, especially in higher latitudes [33].
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The objective of this study was the calibration of the multispectral sensor Sequoia
(Parrot) for the canopy parameters of pure stands and mixtures of winter cover crops grown
in Northern Germany. Therefore, four different VIs (SRred, SRred edge, NDred, NDred edge)
were tested for the best regression with each cover crop’s GAI, DM, and N uptake, either as
a universal or as a species–individual and mixture–individual approach.

2. Materials and Methods
2.1. Study Site

The study site was located in Northern Germany at the Hohenschulen experimental
farm of the Kiel University (10.0 E, 54.3 M, 30 m a.s.l.). Glacial influence led to the small
scale heterogeneity of soil types. Main soil type is defined as Luvisol with a sandy loam
texture in the topsoil. The temperate oceanic climate in the study area is characterised by a
long-term average (1991–2020) mean annual air temperature of 9.3 ◦C and an annual mean
precipitation of 797 mm [34].

2.2. Trial Designs

Data collection was carried out in two trials (A and B) in 2018 and 2019 with winter
cover crops from different functional groups (Table 1). From trial A, we used 16 randomised
plots with four sole cover crops grown after winter oilseed rape. All cover crop treatments
in trial A were unfertilized. Trial B was performed in 32 strips with four cover crops as
sole stands and four cover crop mixtures. Variations in biomass growth were achieved by
implementing two sowing dates and two different nitrogen levels (with and without N
fertilisation, N-level adapted according to sowing date, Table 2). Cover crop mixtures sown
in Trial B were all possible combinations of the non-winter-hardy species: OR–SO (oilseed
radish, saia oats), OR–SV (oilseed radish, spring vetch), SO–SV (saia oat, spring vetch), and
OR–SO–SV (oilseed radish, saia oat, common vetch) (Table 1). Winter-hardy rye was not
included in the mixture combinations.

Table 1. Winter cover crops investigated in this study.

Cover Crop Oilseed Radish Saia Oat Spring Vetch Winter Rye

Botanical name Raphanus sativus Avena strigosa Vicia sativa Secale cereale

Family Brassicaceae Poaceae Leguminosae Poaceae

Abbreviation OR SO SV WR

Winterhardiness no no no yes

Table 2. Trial design, sowing dates, and N-level in Trials A and B.

Trial Sowing Date Nitrogen Levels (kg N ha−1)

Trial A 20 August 2018
23 August 2019 0 (0N)

Trial B

17 August 2018
3 September 2018
24 August 2019

10 September 2019

0 (0N); 60 (60N)
0 (0N); 40 (40N)
0 (0N); 60 (60N)
0 (0N); 40 (40N)

2.3. Reflectance Measurements

Spectral data were collected biweekly with the multispectral camera Sequoia (Parrot),
which was mounted to the eBee-X or eBee-SQ drone. The Sequoia (Parrot) camera comprises
four spectral bands covering the wavelength ranges of green (550 nm) and red light
(660 nm), red edge (RE, 735 nm), and near infrared (NIR, 790 nm). The reflection bands
have a bandwidth of 40 nm, except for RE, with 10 nm. Radiometric calibration was
performed using a grey scale target, photographed by the camera before each flight. A light
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sensor on top of the Sequoia (Parrot) camera measured the incoming radiation. Especially
considering the poorer light conditions that occur during the autumn and winter seasons,
the values for incoming radiation data became more important for corrections during
postprocessing. Flight routes were planned with the software eMotion3 from senseFly.
Pixel size was set as 8 cm × 8 cm pixel−1. After each flight, the images recorded with
the Sequoia sensor were processed with eMotion3 and Pix4Dmapper software (Pix4D
SA., Switzerland). Using Pix4Dmapper, recorded images were processed to orthogonal
reflection maps for each reflectance band. Recording an additional image after sampling
provided the location and area of the harvested biomass in each plot. The reflectance of
the regarded sampling areas was extracted using QGIS (version 3.22.7) and R 4.0.4 [35,36].
To avoid bias due to pixels containing soil or shadow, the median of the extracted pixels
served as a representative value [15].

2.4. Plant Sampling

Within two days after each UAV’s flight, destructive plant samplings were made. The
parameters green area index (GAI, cm2 cm−2), dry matter (DM, g m−2), and N concentration
of DM (%) were determined. Therefore, in each plot, 0.5 m2 plant material was dug out of
the soil. Roots were cut of afterwards to ensure that the complete above-ground biomass
was included in the sample. Remaining biomass was fractionated in the green plant
material of cover crops, weeds, and senescent plant material. Weeds were dominated by
the plants of voluntary oilseed rape. Senescent material was defined as yellow or brown
biomass, which was not photosynthetically active. GAI of the green vegetation (cover crop
and weed fraction) was measured using the LI-3100C Area Meter (LI-COR Inc., Lincoln,
NE USA). The sampled biomass of all fractions was oven-dried at 60 ◦C for five days and
weighted subsequently. N concentration of all fractions was assessed with a CN-Analyser
(TruMac CN, LECO) and converted to N uptake g m−2 of the regarded DM.

2.5. Statistical Analysis

All calculations were performed in R (Version 4.0.4, R Core Team, 2021). For canopy
parameter prediction, simple ratios (SRs) and normalised difference indices (NDs) were
calculated, combining the spectral bands red and NIR according to Table 3.

Table 3. Description of vegetation indices investigated in this study with spectral bands used for
calculation (NIR: near infrared, RE: red edge, red: red).

Vegetation Index Abbreviation Formula Reference

Simple ratio SRred
NIR
red Jordan [31]

Simple ratio red edge SRred edge
NIR
RE Sims and Gamon [37]

Normalised difference
vegetation index NDred

NIR – red
NIR + red Rouse et al. [30]

Red edge normalised
difference vegetation index NDred edge

NIR – RE
NIR + RE

Dong et al. [38],
Gitelson and
Merzlyak [39]

Red: 660 nm; RE: 735 nm; NIR: 790 nm

After selecting the most suitable VI, different model approaches were compared
(Figure 1). Measured input data for the canopy parameters referred to the green vegetation.
Senescent biomass was excluded, as it showed a low spectral response [23]. One approach
was the estimation of the cover crop canopy parameters using a universal model (n = 248).
Therefore, the best performing vegetation index was correlated with the measured canopy
parameters (GAI, DM, N) across all cover crop species. Furthermore, models were gen-
erated for each cover crop separately, and were referred to as species–individual models
(n = 65 (OR), n = 53 (SO), n = 65 (SV), n = 65 (WR)).
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Figure 1. Workflow of the drone-based, non-destructive sampling, model calibrations (universal,
species–and mixture–individual model), and the prediction possibilities of the green area index (GAI),
dry matter (DM), and N uptake (N) of the respected species or mixture.

For mixed stands, the two model approaches were tested as well. The first assumption
was the calibration of the mixture models similar to the species–individual calibration,
referred to as the mixture–combination model. Secondly, the universal model based on the
sole cover crops was applied to the mixture data set. The data set for cover crop mixtures
was restricted to DM and N uptake in 2018 (n = 27 for each cover crop mixture). Relative
mean absolute error (rMAE) and adjusted r2 (R2) were used to assess error of prediction
and for a performance comparison of the VI models.

3. Results
3.1. Weather Conditions

Measured temperature during the observation period ranged from 30 to −1.1 ◦C in
2018 and 32.1 to −1.3◦C in 2019. Frost events (<0 ◦C) were documented at 28 November
2018 (−1.1 ◦C), 31 October 2019 (−1.3 ◦C), and 1 November 2019 (−0.1 ◦C). Cumulative
PAR saturated towards winter in both years and reached a sum of 402.9 W m−2 in 2018
and 332.7 W m−2 in 2019 (Figure 2).

3.2. Cover Crop DM Accumulation

Crop growth within the plots turned out to be heterogenous. Biomass varied strongly
with each sampling date. After the frost events, GAI, DM, and N uptake decreased or
saturated. In 2019, frost events occurred earlier in the season, reducing living biomass
even more clearly, especially for SV. The data for cover crop mixtures were restricted to
DM g m−2 and N uptake g m−2 in 2018 (Figure 3).
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Figure 2. Cumulative photosynthetic active radiation (PAR) (W m−2) (black) and averaged tempera-
ture (◦C) per day (red) during vegetation periods in 2018 and 2019. The light-red area presents the
range according to minimal and maximal temperature (◦C) per day. Frost events are illustrated by a
blue vertical line (28 November 2018, 31 October 2019, 1 November 2019).

Senescent biomass increased towards the winter month. The highest proportion
occurred in winter rye (WR) with 45.7% after a frost event in November 2018. In general,
the proportion of senescent plant material was <20% in 2018 and <10%, with the slightly
higher values forOR, in 2019. SV showed little to no proportions of senescence for both
years (Figure 4).

3.3. Universal Calibration

Linear models were established to predict the parameters GAI, DM, and N uptake of all
sole cover crops together by four VIs (SRred, SRred edge, NDred and NDred edge). Regarding
rMAE and R2, the universal calibration using SRred to predict GAI performed best (Figure 5).
Furthermore, SRred estimated DM and N uptake more precisely than the other VIs (Table 4).
NDred models assessed a moderate error but were saturated for GAI values >2 (Figure 5).
This also applied for DM g m−2 and N uptake g m−2 (Table 4). Within lower GAI ranges,
the NDred estimated negative values (Figure 5). VIs using the RE band, such as NDred edge
and SRred edge, showed higher rMAE compared to their red-based counterparts. The
performance of RE-based VIs was almost similar for all regarded canopy parameters
(Table 4). Towards a later time of the year, the values of rMAE increased while R2 decreased
(Figure 6), indicating less reliability. Coincidently, a proportion of the senescent biomass
increased during the vegetation period (Figure 4). Winter rye reached the highest amount
of senescent biomass in December.
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Table 4. Universal models for predicting canopy parameters (green area index (GAI), dry matter
(DM) (g m−2), and N uptake (N) (g m−2)) of cover crops. For each parameter, four vegetation indices
(VIs) (SRred, SRred edge, NDred, NDred edge) were tested.

Parameter VI Equation rMAE R2

GAI SRred −0.21 + 0.19x 31.34 0.60
SRred edge −4.46 + 4.75x 41.46 0.39

NDred −2.46 + 5.51x 39.91 0.43
NDred edge −0.05 + 13.74x 40.93 0.40

DM SRred −18.51 + 14.56x 50.37 0.53
SRred edge −361.79 + 377.76x 63.38 0.36

NDred −204.94 + 441.53x 61.81 0.41
NDred edge −10.66 + 1097.02x 62.67 0.37

N SRred 0.43 + 0.4x 35.88 0.45
SRred edge −8.1 + 9.72x 43.83 0.26

NDred −5.72 + 13.6x 38.91 0.43
NDred edge 0.88 + 28.68x 43.37 0.27
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Figure 6. Values of R2 and relative mean absolute error (rMAE) (%) of the universal SRred model
predicting green area index (GAI) over a growth period of cover crops.

3.4. Species–Individual Calibration

For each individual cover crop, the linear models for all regarded canopy parameters
with the generically best performing VI SRred were established. In general, the best results
of the species–individual models were achieved for the GAI prediction, with an R2 of
0.76, 0.62, 0.56, and 0.50 for SV, SO, OR, and WR, respectively (Figure 6). The lowest
rMAE (25.87%) was calculated for the GAI prediction of SV. The predictions for DM and
N uptake were less accurate than GAI (Figure 7). The calibration of SV outperformed the
other species with a low average rMAE of 3.68 % and a higher R2 of 0.22 for all canopy
parameters. The lowest accuracy was found for the prediction related to WR across all
canopy parameters. Comparing species–individual with the universal model outputs by
rMAE, the predictions for all cover crops except for WR were better when using the species–
individual models (Figure 8, Table 5). With minor differences, WR’s DM and N uptake was
somewhat predicted by the universal model. In general, the differences in rMAE for GAI
prediction were small (OR: 1.49%; SO: 2.50%; SV: 2.63%; WR: −0.63%). A comparison of
the DM prediction resulted in larger differences in favour of the species–individual models,
especially for SV and WR (32.93% and 14.45%, respectively).
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Figure 7. Species-individual models using SRred for estimation of (A) green area index (GAI), (B) dry
matter (DM) (g m−2), and (C) N uptake (g m−2). Model performance was assessed with R2 and the
relative mean absolute error (rMAE) (%). Calibration formula is noted for each species and each
canopy parameter.

Table 5. Comparison of the two model approaches’ prediction performance (species–individual
vs. universal models) for green area index (GAI), dry matter (DM), and N uptake (N) by relative
mean absolute error (rMAE) (%) for each separate cover crop (oilseed radish, saia oat, spring vetch,
winter rye).

rMAE %
Parameter Species Species–Individual Universal

GAI Oilseed Radish 26.91 28.4
Saia Oat 30.16 32.66

Spring Vetch 25.87 28.5
Winter Rye 36.11 35.48
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Table 5. Cont.

rMAE %
Parameter Species Species–Individual Universal

DM Oilseed Radish 32.28 33.26
Saia Oat 35.49 45.18

Spring Vetch 31.18 64.11
Winter Rye 36.6 51.05

N Oilseed Radish 31.3 33.79
Saia Oat 28.39 38.27

Spring Vetch 31.25 39.1
Winter Rye 36.86 34.47
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Figure 8. Comparison of the two model approaches’ prediction performance for green area index
(GAI), dry matter (DM), and N uptake (N) by relative mean absolute error (rMAE) (%). Illustrated is
the difference (Diff) of the universal model (uni) calibrated with the sole cover crop data set and the
species–individual models (indiv) of each separate cover crop (oilseed radish, saia oat, spring vetch,
winter rye).

3.5. Mixture Calibration

In order to predict the N uptake g m−2 of cover crop mixtures, two model approaches
were compared. The mixture–individual model was related to the spectral reflectance of
each cover crop mixtures (Figure 1). The second approach was the estimation made by the
universal model, generated with the sole cover crops (OR, SO, WR, SV) based on SRred
(Figure 1, Tables 1 and 4). As shown in Figure 9, both the mixture–individual and universal
models did not differ in their performance of estimating DM g m−2 and N uptake g m−2 for
mixtures, with relative error differences below 3%. The DM g m−2 of OR–SO and SO–SV
were rather preferably predicted with the mixture–individual model due to a higher rMAE
of the universal model prediction. The N uptake g m−2 estimations for the OR–SV, SO–SV,
and SO–OR–SV by mixture–individual models were more precise, while N uptake g m−2

for OR–SO was somewhat predicted by the universal model. According to R2, the best
estimation for DM and N was achieved by the three-component mixture (SO–OR–SV), with
0.5 and 0.44, respectively (Table 6).
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Figure 9. Comparison of the two model approaches’ prediction performance for dry matter (DM)
and N uptake (N) by relative mean absolute error (rMAE) (%). Illustrated is the difference (Diff) of
the universal model (uni) calibrated with the sole cover crop data set and mixture-individual models
(mix) of each separate cover crop mixture (OR: oilseed radish, SO: saia oat, SV: spring vetch).

Table 6. Mixture–individual models based on SRred for predicting the canopy parameters (dry matter
(DM) (g m−2) and N uptake (N) (g m−2)) of cover crop mixtures (OR: oilseed radish, SO: saia oat, SV:
spring vetch). Model performance was assessed using the relative mean absolute error (rMAE) (%)
and R2. Calibration formula is noted for each mixture and each canopy parameter.

Parameter Mixture Equation rMAE R2

DM OR–SO −5.18 + 15.51x 30.71 0.3
OR–SV −19.56 + 15.23x 29.18 0.37
SO–SV −3.78 + 13.15x 49.04 0.25

SO–OR–SV −46.26 + 17.42x 30.3 0.5

N OR–SO 1.68 + 0.37x 27 0.25
OR–SV 1.53 + 0.38x 27.18 0.25
SO–SV 0.58 + 0.32x 33.6 0.35

SO–OR–SV 0.38 + 0.47x 25.18 0.44

4. Discussion
4.1. Universal Model Approach

Generating universal models based on SRred including all cover crops was the first
approach used to estimate GAI, DM g m−2, and N uptake g m−2 using the entire data set
consisting of 248 measurements for 18 dates. The best results were achieved for the canopy
parameter GAI, with an R2 of 0.60 (Figure 5). GAI directly correlates with the chlorophyll
amount in the leaves and thus with the spectral reflectance. The estimations of DM g m−2

and N uptake g m−2 were less accurate, with an R2 up to 0.53 and 0.45, respectively
(Figure 5). Canopy features such as N uptake or DM do not directly correlate to spectral
reflectance, as with GAI [12]; however, species-specific correlations between GAI and these
secondary traits indirectly lead to a more or less close correlation to VIs. The prediction
power for the “secondary variables” [12] is lower than for GAI; however, modelling the
physiological dynamics was, in our study, not superior to the directly estimated ones (data
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not shown). However, empirical derivation and thus direct derivation from reflectance
data was achieved by several authors for winter wheat. For example, Chen [40] predicted
the biomass of with several VIs, reaching a maximal R2 of 0.86 using NDVI. In addition,
Feng et al. [41] found correlations for the leaf N concentration of winter wheat with a large
range of VIs. Earlier studies of Tucker et al. [18] showed a good biomass prediction power
of the common SR based on NIR and red (R2: 0.76).

4.2. VI Selection

In this study, two different approaches for the prediction of winter cover crop canopy
parameters were examined. The universal and species–individual models of predic-
tions in sole stands based on a simple ratio (SRred) were the most precise compared
to the other tested VIs. Typically, implementing the RE band into the VIs’ estimations
increased the precision due to the strong correlation of chlorophyll content within the
RE wavelengths [16,24,28]. Dong et al. [38] compared the performance of conventional
VIs, such as SRred and NDred, to RE-based VIs estimating the FPAR of wheat and maize.
For both crops, their linear correlations were more stable after implementing RE into the
indices. However, in our case, neither the SRs nor NDs performed better when using
RE. Considering that most studies observed crop-growing periods during the spring and
summer months [15], implementing RE may not be appropriate for the predominant light
conditions during the winter season (Figures 2 and 5). Another explanation might be that
Sequoia’s RE band (10 nm) is narrower than the other bands (40 nm) of the sensor. Due to
the heterogenous reflectance of the plants caused by the poor light conditions of autumn
and winter, reflectance received in the wavelength of RE in our measurements might be
less accurate.

Regarding the most commonly used NDred, the predictions for GAI did not exceed
values of 2.6 for canopies with GAIs up to 4.9 (Figure 5). Saturation effects using NDred
were also found by Nguy-Robertson et al. [42], predicting the GAI of maize, soybean,
wheat, and potato. Modifications of NDred towards the sensitivity of dense stands were
partially successful with the wide dynamic range vegetation index (WDRVI), which in-
cludes a weighting factor of the vegetative fraction [19,42]. Prabhakara et al. [23] found a
linear correlation between NDred and groundcover percentage, studying the reflectance
behavior of winter cover crops by using a handheld multispectral radiometer. Groundcover
percentage mostly describes the top of the canopy, while GAI, measured in the current
study, includes all green areas within the canopy structure of the respected biomass. Specif-
ically, for further derived parameters such as DM accumulation and the N uptake of cover
crops, a detailed knowledge of GAI as the primary driver is more important than a rough
estimation of the percentage of ground cover which might be sufficient for the estimations
of erosion protection potential. In general, NDred is not sensitive to structures beneath
the canopy surface, and hence saturates with a higher biomass [43]. Therefore, from the
quantitative empirical results as well as from theoretical aspects, the SR based on red band
was the preferable VI with which to estimate the functional parameters from the spectral
information of winter cover crops.

4.3. Universal vs. Species–Individual and Mixture–Individual Approach

Besides the universal model approach including all cover crops, species–individual
models were applied in a second step. Comparing the universal model approach and
the species–individual model approach resulted in several differences in favour of the
species–individual models, especially for DM and N uptake. GAI estimations showed
little differences. SV plots in 2018 were strongly influenced by rapeseed volunteers, which
limits the results performed by the SV models in terms of the tested species’ characteristics.
Corresponding data points were not excluded from the calculations, as a motivation of the
study was to reflect the real environmental conditions of winter cover crop cultivation in
common cropping sequences. Nevertheless, SV, as a small phenological plant, was easier
to calibrate than plants reaching higher values of GAI. The WR–individual model did
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not perform better than the universal model for GAI and N uptake (Figure 8), which can
be traced back to the high amounts of senescent plant material disturbing the reflectance
signal (Figure 4).

Typically, VIs are derived from the reflectance of the wavelength in visible light as well
as NIR. The information delivered by NIR reflectance is mostly related to the structural
properties of a canopy, such as leaf angle and canopy architecture, while visible light
is more related to the activity of absorbers, such as chlorophyll, in the canopy [24,29].
Viña et al. [27] evaluated the performance of multiple VIs for a general correlation in the
GAIs of soybean and maize. Except for the RE Chlorophyll Index (CI red edge), all investi-
gated VIs differentiated between both crop types, namely, soybean and maize. The authors
cited the differences in chlorophyll distribution within the leaf as the main source for the
different depths in the absorption of the red light. Additionally, diverse canopy structures
led to a higher reflection in NIR compared to homogenous vegetation coverage [27]. Hence,
a sensor calibration for each species individually seems to be most appropriate.

The observed canopies of the winter cover crops were partly mixed with weeds and
rapeseed volunteers competing for resources, mainly radiation. The canopy structure was
not as homogenous as in a pure wheat or maize canopy, and thus also the spectral reflection.
The amount of absorbers and reflectance of radiation differs for each leaf shape and plant
type [29]. Consequently, in heterogenous canopies, high precision in a canopy parameter
estimation should not be expected.

In cover crop mixtures, the combination of several plants with different characteristics,
such as growth behaviour, canopy structure, leaf size, etc., leads to a diverse reflectance
throughout the season and within the canopy. Competition between the species makes
the emergence and the share of the single crops in the final biomass of a mixed stand
unforeseeable, even if it is a well-studied seed mixture. Focussing on cover crops, the
composition of a canopy mixture depends on management preferences, soil type, and
weather conditions, and is usually independent from the ratio of the sown seeds as the
only given measure. As the results showed, sensor calibration for a specific mixture was
possible; however, its applicability is questionable (Table 6, Figure 9). A more reliable
approach might be to utilize the universal calibration for mixtures with only a slightly
reduced performance compared to mixture–individual models.

In general, estimations made using species–individual models achieve more precise
results than those made using a universal model. Regarding mixture–individual models,
the results did not differ fundamentally. Nevertheless, the universal model approach
is based on a larger database than individual models, which makes it more reliable. In
addition, the universal model successfully predicted the independent data set of cover
crop mixtures.

4.4. Seasonal Challenges

Observing vegetation during autumn and winter using the used Sequoia sensor
turned out to be challenging. R2 decreased to 0.28 in December, while rMAE increased
towards 39.12% (Figure 6). The inaccuracy in the winter month can be explained by the
low irradiance. PAR saturated in November and December and was even lower in 2019
(Figure 2). Consequently, the sensor receives only a little of the reflectance of the leaves. A
second mitigation source is the low sun angle. Assmann et al. [33] found that variation in
the sun angle leads to uncertainties in NDred estimates by testing the same Sequoia sensor
with several flights in diurnal solar motion in the arctic tundra. At higher latitudes such as
Northern Germany, the variation of the sun’s angle during a year is up to 40◦, resulting in
large changes in the incoming radiation. Especially, the growth period of the winter cover
crops covers almost the maximum range of the sun’s angle. Therefore, the scattering of raw
data as well as canopy parameter estimates during winter months might be explainable
due to the drastic decline in light incidence. Moreover, our measurements during the
respected season were frequently influenced by clouds casting shadows on the study
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area, as documented by Assmann et al. [33] in northwestern Canada, by Stow et al. [44] in
south–central Scotland, and as reviewed by Aasen et al. [45].

Low temperatures in winter, furthermore, result in an unneglectable and increasing
proportion of senescent plant material over time, especially with non-winter-hardy cover
crops such as OR, SO, or SV. In the current study, WR—defined as a winter-hardy cover
crop—recorded the highest amount of senescent plant material in both years, especially
after frost events (Figure 4). Disturbance of the reflectance signal due to senescence was
mirrored in the species-individual calibration of WR. The amount of destructive senescent
plant material sampled explained a part of the scattering effects in the spectral reflectance.
The spectra of the yellow leaves differ from green leaves, as reflection in red and green light
increases and decreases in the range of NIR [25,46]. The influence of senescent leaves on the
estimates was also shown by Di Bella et al. [47] for NDred in a canopy of Italian ryegrass.

Another source of error is the effect of the saturation of the pixel values. Illumination
geometry adjustments have been studied by Olsson et al. [48], who stated that the sunshine
sensor of Sequoia (Parrot) is inaccurate if there is a high contrast in the pixel values of the
image. Saturation occurs over bright areas such as bare soil, in between and around the
observed vegetation, influencing the reflectance and the extracted pixel values. During a
few sampling dates, bare soil surrounded the crops or was visible through a sparse stand
and led to a noticeable increase in error values (data not shown). Sorting out single images
with saturated pixel values even before pre-processing by Pix4D made the reflectance maps
more reliable and reduced scattering.

5. Conclusions

The estimation of cover crop canopy parameters can promote the estimation of their
effect on the supply of N to cash crops and thereby improve the nitrogen use efficiency of
cropping systems. Remote sensing techniques have brought about a huge development
in agricultural science and thus to the practice. This study revealed opportunities and
challenges for the utilisation of such methods in winter cover crops dealing with veg-
etative growth periods characterised by the low irradiance and substantial fractions of
senescent biomass.

Applying a universal model for winter cover crops seemed to be a sound solution.
Species–individual models resulted in somewhat more precise predictions but were based
on smaller sub-datasets. Dealing with cover crops involves a huge variation in species and
heterogenous canopies compared to cash crops, which are managed as homogenously as
possible. SRred was the most sufficient VI tested in this study, irrespective of the model
approach used, and was consistently superior to the widely used NDred. In contrast to the
often-described advantages of implementing RE instead of red band for the main crops,
this did not improve the prediction accuracy in our observed winter cover crops.

Nevertheless, winter cover crops are mostly cultivated for their functional attributes,
such as the reduction in nitrate leaching and the improvement of soil properties. Therefore,
small inaccuracies in the estimation of GAI, DM g m−2, or N uptake g m−2 can be tolerated.
The main agronomic focus is to estimate the rough performance of the cultivated winter
cover crops in terms of biomass growth and N uptake. Therefore, the findings should serve
as a tool for the rapid and inexpensive estimation of the environmental and rotational
services of cover crops.
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