1,192 research outputs found

    Detection of an Extrasolar Planet Atmosphere

    Full text link
    We report high precision spectrophotometric observations of four planetary transits of HD 209458, in the region of the sodium resonance doublet at 589.3 nm. We find that the photometric dimming during transit in a bandpass centered on the sodium feature is deeper by (2.32 +/- 0.57) x 10^{-4} relative to simultaneous observations of the transit in adjacent bands. We interpret this additional dimming as absorption from sodium in the planetary atmosphere, as recently predicted from several theoretical modeling efforts. Our model for a cloudless planetary atmosphere with a solar abundance of sodium in atomic form predicts more sodium absorption than we observe. There are several possibilities that may account for this reduced amplitude, including reaction of atomic sodium into molecular gases and/or condensates, photoionization of sodium by the stellar flux, a low primordial abundance of sodium, or the presence of clouds high in the atmosphere.Comment: 26 pages, 8 figures, accepted by ApJ 2001 November 1

    The CORALIE survey for southern extra-solar planets VIII. The very low-mass companions of HD141937, HD162020, HD168443, HD202206: brown dwarfs or superplanets?

    Full text link
    Doppler CORALIE measurements of the solar-type stars HD141937, HD162020, HD168443 and HD202206 show Keplerian radial-velocity variations revealing the presence of 4 new companions with minimum masses close to the planet/brown-dwarf transition, namely with m_2sin(i) = 9.7, 14.4, 16.9, and 17.5 M_Jup, respectively. The orbits present fairly large eccentricities (0.22<e<0.43). Except for HD162020, the parent stars are metal rich compared to the Sun, as are most of the detected extra-solar planet hosts. Considerations of tidal dissipation in the short-period HD162020 system points towards a brown-dwarf nature for the low-mass companion. HD168443 is a multiple system with two low-mass companions being either brown dwarfs or formed simultaneously in the protoplanetary disks as superplanets. For HD202206, the radial velocities show an additional drift revealing a further outer companion, the nature of which is still unknown. Finally, the stellar-host and orbital properties of massive planets are examined in comparison to lighter exoplanets. Observed trends include the need of metal-rich stars to form massive exoplanets and the lack of short periods for massive planets. If confirmed with improved statistics, these features may provide constraints for the migration scenario.Comment: 14 pages including figures, accepted for publication in A&

    A photometric study of the hot exoplanet WASP-19b

    Full text link
    Context: When the planet transits its host star, it is possible to measure the planetary radius and (with radial velocity data) the planet mass. For the study of planetary atmospheres, it is essential to obtain transit and occultation measurements at multiple wavelengths. Aims: We aim to characterize the transiting hot Jupiter WASP-19b by deriving accurate and precise planetary parameters from a dedicated observing campaign of transits and occultations. Methods: We have obtained a total of 14 transit lightcurves in the r'-Gunn, IC, z'-Gunn and I+z' filters and 10 occultation lightcurves in z'-Gunn using EulerCam on the Euler-Swiss telescope and TRAPPIST. We have also obtained one lightcurve through the narrow-band NB1190 filter of HAWK-I on the VLT measuring an occultation at 1.19 micron. We have performed a global MCMC analysis of all new data together with some archive data in order to refine the planetary parameters and measure the occultation depths in z'-band and at 1.19 micron. Results: We measure a planetary radius of R_p = 1.376 (+/-0.046) R_j, a planetary mass of M_p = 1.165 (+/-0.068) M_j, and find a very low eccentricity of e = 0.0077 (+/-0.0068), compatible with a circular orbit. We have detected the z'-band occultation at 3 sigma significance and measure it to be dF_z'= 352 (+/-116) ppm, more than a factor of 2 smaller than previously published. The occultation at 1.19 micron is only marginally constrained at dF_1190 = 1711 (+/-745) ppm. Conclusions: We have shown that the detection of occultations in the visible is within reach even for 1m class telescopes if a considerable number of individual events are observed. Our results suggest an oxygen-dominated atmosphere of WASP-19b, making the planet an interesting test case for oxygen-rich planets without temperature inversion.Comment: Published in Astronomy & Astrophysics. 11 pages, 11 figures, 4 table

    An Investigation into the Radial Velocity Variations of CoRoT-7

    Full text link
    CoRoT-7b, the first transiting ``superearth'' exoplanet, has a radius of 1.7 R_Earth and a mass of 4.8 M_Earth. Ground-based radial velocity measurements also detected an additional companion with a period of 3.7 days (CoRoT-7c) and a mass of 8.4 M_Earth. The mass of CoRoT-7b is a crucial parameter for planet structure models, but is difficult to determine because CoRoT-7 is a modestly active star and there is at least one additional companion. A Fourier analysis was performed on spectral data for CoRoT-7 taken with the HARPS spectrograph. These data include RV measurements, spectral line bisectors, the full width at half maximum of the cross-correlation function, and Ca II emission. The latter 3 quantities vary due to stellar activity and were used to assess the nature of the observed RV variations. An analysis of a sub-set of the RV measurements where multiple observations were made per night was also used to estimate the RV amplitude from CoRoT-7b that was less sensitive to activity variations. Our analysis indicates that the 0.85-d and 3.7-d RV signals of CoRoT-7b and CoRoT-7c are present in the spectral data with a high degree of statistical significance. We also find evidence for another significant RV signal at 9 days. An analysis of the activity indicator data reveals that this 9-d signal most likely does not arise from activity, but possibly from an additional companion. If due to a planetary companion the mass is m = 19.5 M_Earth, assuming co-planarity with CoRoT-7b. A dynamical study of the three planet system shows that it is stable over several hundred millions of years. Our analysis yields a RV amplitude of 5.04 +/- 1.09 m/s for CoRoT-7b which corresponds to a planet mass of m = 6.9 +/- 1.4 M_Earth. This increased mass would make the planet CoRoT-7b more Earth-like in its internal structure.Comment: 20 pages, 20 figure

    The CORALIE survey for southern extra-solar planets. X. A Hot Jupiter orbiting HD73256

    Full text link
    Recent radial-velocity measurements obtained with the CORALIE spectrograph on the 1.2-m Euler Swiss telescope at La Silla unveil the presence of a new Jovian-mass Hot Jupiter around HD 73256. The 1.85-M_Jup planet moves on an extremely short-period (P=2.5486 d), quasi-circular orbit. The best Keplerian orbital solution is presented together with an unsuccessful photometric planetary-transit search performed with the SAT Danish telescope at La Silla. Over the time span of the observations, the photometric follow-up of the candidate has nevertheless revealed a P=14-d photometric periodicity corresponding to the rotational period of the star. This variation as well as the radial-velocity jitter around the Keplerian solution are shown to be related to the fair activity level known for HD 73256.Comment: 7 pages, 7 figures. Accepted in A&

    Astrometric planet search around southern ultracool dwarfs II: Astrometric reduction methods and a deep astrometric catalogue

    Full text link
    We describe the astrometric reduction of images obtained with the FORS2/VLT camera in the framework of an astrometric planet search around 20 M/L-transition dwarfs. We present the correction of systematic errors, the achieved astrometric performance, and a new astrometric catalogue containing the faint reference stars in 20 fields located close to the Galactic plane. We detected three types of systematic errors in the FORS2 astrometry: the relative motion of the camera's two CCD chips, errors that are correlated in space, and an error contribution of yet unexplained origin. The relative CCD motion has probably a thermal origin and usually is 0.001-0.010 px (~0.1-1 mas), but sometimes amounts to 0.02-0.05 px (3-6 mas). This instability and space-correlated errors are detected and mitigated using reference stars. The third component of unknown origin has an amplitude of 0.03-0.14 mas and is independent of the observing conditions. We find that a consecutive sequence of 32 images of a well-exposed star over 40 min at 0.6" seeing results in a median r.m.s. of the epoch residuals of 0.126 mas. Overall, the epoch residuals are distributed according to a normal law with a chi2~1. We compiled a catalogue of 12000 stars with I-band magnitudes of 16-22 located in 20 fields, each covering ~2x2'. It contains I-band magnitudes, ICRF positions with 40-70 mas precision, and relative proper motions and absolute trigonometric parallaxes with a precision of 0.1 mas/yr and 0.1 mas at the bright end, respectively.Comment: 17 pages, 19 figures, 4 tables, accepted for publication in A&A on March 14, 201

    Astrometric orbit of a low-mass companion to an ultracool dwarf

    Full text link
    Little is known about the existence of extrasolar planets around ultracool dwarfs. Furthermore, binary stars with Sun-like primaries and very low-mass binaries composed of ultracool dwarfs show differences in the distributions of mass ratio and orbital separation that can be indicative of distinct formation mechanisms. Using FORS2/VLT optical imaging for high precision astrometry we are searching for planets and substellar objects around ultracool dwarfs to investigate their multiplicity properties for very low companion masses. Here we report astrometric measurements with an accuracy of two tenths of a milli-arcsecond over two years that reveal orbital motion of the nearby L1.5 dwarf DENIS-P J082303.1-491201 located at 20.77 +/- 0.08 pc caused by an unseen companion that revolves about its host on an eccentric orbit in 246.4 +/- 1.4 days. We estimate the L1.5 dwarf to have 7.5 +/- 0.7 % of the Sun's mass that implies a companion mass of 28 +/- 2 Jupiter masses. This new system has the smallest mass ratio (0.36 +/- 0.02) of known very low-mass binaries with characterised orbits. With this discovery we demonstrate 200 micro-arcsecond astrometry over an arc-minute field and over several years that is sufficient to discover sub-Jupiter mass planets around ultracool dwarfs. We also show that the achieved parallax accuracy of < 0.4 % makes it possible to remove distance as a dominant source of uncertainty in the modelling of ultracool dwarfs.Comment: 9 pages, 8 figures, accepted for publication in Astronomy and Astrophysics. The reduced astrometry data will be made publically available through the CD

    Astrometric planet search around southern ultracool dwarfs III. Discovery of a brown dwarf in a 3-year orbit around DE0630-18

    Full text link
    Using astrometric measurements obtained with the FORS2/VLT camera, we are searching for low-mass companions around 20 nearby ultracool dwarfs. With a single-measurement precision of 0.1 milli-arcseconds, our survey is sensitive to a wide range of companion masses from planetary companions to binary systems. Here, we report the discovery and orbit characterisation of a new ultracool binary at a distance of 19.5 pc from Earth that is composed of the M8.5-dwarf primary DE0630-18 and a substellar companion. The nearly edge-on orbit is moderately eccentric (e=0.23) with an orbital period of 1120 d, which corresponds to a relative separation in semimajor axis of approximately 1.1 AU. We obtained a high-resolution optical spectrum with UVES/VLT and measured the system's heliocentric radial velocity. The spectrum does not exhibit lithium absorption at 670.8 nm, indicating that the system is not extremely young. A preliminary estimate of the binary's physical parameters tells us that it is composed of a primary at the stellar-substellar limit and a massive brown-dwarf companion. DE0630-18 is a new very low-mass binary system with a well-characterised orbit.Comment: 4 pages, 7 figures. Accepted for publication in A&
    corecore