9 research outputs found

    Cellular instabilities of n-butane/air flat flames probing by PLIF-OH and PLIF-CH2O laser diagnosis

    No full text
    The structure and instability characteristics of non-adiabatic fuel-rich n-butane/air cellular flames on McKenna burner were experimentally investigated at atmospheric pressure. Planar Laser Induced Fluorescence (PLIF-OH and PLIF-CH2O) flame diagnosis technology was utilized to probe the flame structure under varied equivalence ratio and inflow mixture velocity respectively. Results show that, the equivalence ratio plays an important role in forming cellular flames. The flat, wrinkled and cellular flames appear in turn when increasing equivalence ratio and inflow velocity. Differed to the separated cells of cellular flames appeared in direct Digital camera images and PLIF-OH images, the PLIF-CH2O images clearly display that all cellular flames are connected. In the PLIF-OH images of cellular flames, the OH radical fluorescence signal intensity is higher in the convex region toward unburned mixture than in the concave region, but in PLIF-CH2O images, the fluorescence signal intensity is nearly unchanged in both convex and concave regions. Quantitative stand-off distance and amplitude data probed by PLIF-OH and PLIF-CH2O diagnosis together reveal that the onset of non-adiabatic n-butane/air cellular flames on flat flame burner is dominantly governed by diffusive-thermal mechanism

    The Changsha Historic Urban Area: A Study on the Changing Accessibility of the Road Network

    No full text
    In this study, we used a complex network analysis to examine the accessibility features of changing road networks in historic urban areas. We aimed to discover the pattern of evolution after studying the accessibility of the road network in the Changsha historic urban area over four periods of time. The results were as follows: the layout of the urban road network shows repetitive cluster–parent–subsidiary development, which provides evidence of adaptive adjustment in urban road development; vulnerability has been kept low in the changing urban road network, while the spatial framework of the Changsha historic center is fixed; the evolving urban road network generally shows a deteriorating level of stability, which is largely affected by the shape of the network; the degree centrality (1877, 1.87%; 1917, 1.32%; 1987, 1.85%; 2021, 1.51%) of the urban road network shows a decreasing trend, meaning that the network is generally becoming more balanced in its evolution; and the accessibility of land plots currently used to preserve cultural relics and historic sites remains at a medium to low level, and improvements are needed for some plots. In analyzing the changing accessibility of urban roads in the historic center of Changsha city, two major problems for road renewal were identified: (1) unbalanced development of the urban space due to capital-based projects and (2) providing an appropriate increase in plot accessibility while putting equal emphasis on the protection of the spatial framework in the historic urban area. We conclude that a dynamic review of urban road network accessibility and its targeted optimization are of great significance for the protection and development of Changsha’s historic urban area

    The Changsha Historic Urban Area: A Study on the Changing Accessibility of the Road Network

    No full text
    In this study, we used a complex network analysis to examine the accessibility features of changing road networks in historic urban areas. We aimed to discover the pattern of evolution after studying the accessibility of the road network in the Changsha historic urban area over four periods of time. The results were as follows: the layout of the urban road network shows repetitive cluster–parent–subsidiary development, which provides evidence of adaptive adjustment in urban road development; vulnerability has been kept low in the changing urban road network, while the spatial framework of the Changsha historic center is fixed; the evolving urban road network generally shows a deteriorating level of stability, which is largely affected by the shape of the network; the degree centrality (1877, 1.87%; 1917, 1.32%; 1987, 1.85%; 2021, 1.51%) of the urban road network shows a decreasing trend, meaning that the network is generally becoming more balanced in its evolution; and the accessibility of land plots currently used to preserve cultural relics and historic sites remains at a medium to low level, and improvements are needed for some plots. In analyzing the changing accessibility of urban roads in the historic center of Changsha city, two major problems for road renewal were identified: (1) unbalanced development of the urban space due to capital-based projects and (2) providing an appropriate increase in plot accessibility while putting equal emphasis on the protection of the spatial framework in the historic urban area. We conclude that a dynamic review of urban road network accessibility and its targeted optimization are of great significance for the protection and development of Changsha’s historic urban area

    Influencing Effects of Fabrication Errors on Performances of the Dielectric Metalens

    No full text
    Despite continuous developments of manufacturing technology for micro-devices and nano-devices, fabrication errors still exist during the manufacturing process. To reduce manufacturing costs and save time, it is necessary to analyze the effects of fabrication errors on the performances of micro-/nano-devices, such as the dielectric metasurface-based metalens. Here, we mainly analyzed the influences of fabrication errors in dielectric metasurface-based metalens, including geometric size and shape of the unit element, on the focusing efficiency and the full width at half maximum (FWHM) values. Simulation results demonstrated that the performance of the metasurface was robust to fabrication errors within a certain range, which provides a theoretical guide for the concrete fabrication processes of dielectric metasurfaces

    Application of Improved YOLOv5 in Aerial Photographing Infrared Vehicle Detection

    No full text
    Aiming to solve the problems of false detection, missed detection, and insufficient detection ability of infrared vehicle images, an infrared vehicle target detection algorithm based on the improved YOLOv5 is proposed. The article analyzes the image characteristics of infrared vehicle detection, and then discusses the improved YOLOv5 algorithm in detail. The algorithm uses the DenseBlock module to increase the ability of shallow feature extraction. The Ghost convolution layer is used to replace the ordinary convolution layer, which increases the redundant feature graph based on linear calculation, improves the network feature extraction ability, and increases the amount of information from the original image. The detection accuracy of the whole network is enhanced by adding a channel attention mechanism and modifying loss function. Finally, the improved performance and comprehensive improved performance of each module are compared with common algorithms. Experimental results show that the detection accuracy of the DenseBlock and EIOU module added alone are improved by 2.5% and 3% compared with the original YOLOv5 algorithm, respectively, and the addition of the Ghost convolution module and SE module alone does not increase significantly. By using the EIOU module as the loss function, the three modules of DenseBlock, Ghost convolution and SE Layer are added to the YOLOv5 algorithm for comparative analysis, of which the combination of DenseBlock and Ghost convolution has the best effect. When adding three modules at the same time, the mAP fluctuation is smaller, which can reach 73.1%, which is 4.6% higher than the original YOLOv5 algorithm
    corecore