105 research outputs found

    Application of site and haplotype-frequency based approaches for detecting selection signatures in cattle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>'Selection signatures' delimit regions of the genome that are, or have been, functionally important and have therefore been under either natural or artificial selection. In this study, two different and complementary methods--integrated Haplotype Homozygosity Score (|iHS|) and population differentiation index (F<sub>ST</sub>)--were applied to identify traces of decades of intensive artificial selection for traits of economic importance in modern cattle.</p> <p>Results</p> <p>We scanned the genome of a diverse set of dairy and beef breeds from Germany, Canada and Australia genotyped with a 50 K SNP panel. Across breeds, a total of 109 extreme |iHS| values exceeded the empirical threshold level of 5% with 19, 27, 9, 10 and 17 outliers in Holstein, Brown Swiss, Australian Angus, Hereford and Simmental, respectively. Annotating the regions harboring clustered |iHS| signals revealed a panel of interesting candidate genes like SPATA17, MGAT1, PGRMC2 and ACTC1, COL23A1, MATN2, respectively, in the context of reproduction and muscle formation. In a further step, a new Bayesian F<sub>ST</sub>-based approach was applied with a set of geographically separated populations including Holstein, Brown Swiss, Simmental, North American Angus and Piedmontese for detecting differentiated loci. In total, 127 regions exceeding the 2.5 per cent threshold of the empirical posterior distribution were identified as extremely differentiated. In a substantial number (56 out of 127 cases) the extreme F<sub>ST </sub>values were found to be positioned in poor gene content regions which deviated significantly (p < 0.05) from the expectation assuming a random distribution. However, significant F<sub>ST </sub>values were found in regions of some relevant genes such as SMCP and FGF1.</p> <p>Conclusions</p> <p>Overall, 236 regions putatively subject to recent positive selection in the cattle genome were detected. Both |iHS| and F<sub>ST </sub>suggested selection in the vicinity of the Sialic acid binding Ig-like lectin 5 gene on BTA18. This region was recently reported to be a major QTL with strong effects on productive life and fertility traits in Holstein cattle. We conclude that high-resolution genome scans of selection signatures can be used to identify genomic regions contributing to within- and inter-breed phenotypic variation.</p

    Recent artificial selection in U.S. Jersey cattle impacts autozygosity levels of specific genomic regions

    Get PDF
    Background: Genome signatures of artificial selection in U.S. Jersey cattle were identified by examining changes in haplotype homozygosity for a resource population of animals born between 1953 and 2007. Genetic merit of this population changed dramatically during this period for a number of traits, especially milk yield. The intense selection underlying these changes was achieved through extensive use of artificial insemination (AI), which also increased consanguinity of the population to a few superior Jersey bulls. As a result, allele frequencies are shifted for many contemporary animals, and in numerous cases to a homozygous state for specific genomic regions. The goal of this study was to identify those selection signatures that occurred after extensive use of AI since the 1960, using analyses of shared haplotype segments or Runs of Homozygosity. When combined with animal birth year information, signatures of selection associated with economically important traits were identified and compared to results from an extended haplotype homozygosity analysis. Results: Overall, our results reveal that more recent selection increased autozygosity across the entire genome, but some specific regions increased more than others. A genome-wide scan identified more than 15 regions with a substantial change in autozygosity. Haplotypes found to be associated with increased milk, fat and protein yield in U.S. Jersey cattle also consistently increased in frequency. Conclusions: The analyses used in this study was able to detect directional selection over the last few decades when individual production records for Jersey animals were available

    Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle

    Get PDF
    Background Domestication of the now-extinct wild aurochs, Bos primigenius, gave rise to the two major domestic extant cattle taxa, B. taurus and B. indicus. While previous genetic studies have shed some light on the evolutionary relationships between European aurochs and modern cattle, important questions remain unanswered, including the phylogenetic status of aurochs, whether gene flow from aurochs into early domestic populations occurred, and which genomic regions were subject to selection processes during and after domestication. Here, we address these questions using whole-genome sequencing data generated from an approximately 6,750-year-old British aurochs bone and genome sequence data from 81 additional cattle plus genome-wide single nucleotide polymorphism data from a diverse panel of 1,225 modern animals. Results Phylogenomic analyses place the aurochs as a distinct outgroup to the domestic B. taurus lineage, supporting the predominant Near Eastern origin of European cattle. Conversely, traditional British and Irish breeds share more genetic variants with this aurochs specimen than other European populations, supporting localized gene flow from aurochs into the ancestors of modern British and Irish cattle, perhaps through purposeful restocking by early herders in Britain. Finally, the functions of genes showing evidence for positive selection in B. taurus are enriched for neurobiology, growth, metabolism and immunobiology, suggesting that these biological processes have been important in the domestication of cattle. Conclusions This work provides important new information regarding the origins and functional evolution of modern cattle, revealing that the interface between early European domestic populations and wild aurochs was significantly more complex than previously thought

    A high resolution genome-wide scan for significant selective sweeps: an application to pooled sequence data in laying chickens

    Get PDF
    In most studies aimed at localizing footprints of past selection, outliers at tails of the empirical distribution of a given test statistic are assumed to reflect locus-specific selective forces. Significance cutoffs are subjectively determined, rather than being related to a clear set of hypotheses. Here, we define an empirical p-value for the summary statistic by means of a permutation method that uses the observed SNP structure in the real data. To illustrate the methodology, we applied our approach to a panel of 2.9 million autosomal SNPs identified from re-sequencing a pool of 15 individuals from a brown egg layer line. We scanned the genome for local reductions in heterozygosity, suggestive of selective sweeps. We also employed a modified sliding window approach that accounts for gaps in the sequence and increases scanning resolution by moving the overlapping windows by steps of one SNP only, and suggest to call this a "creeping window" strategy. The approach confirmed selective sweeps in the region of previously described candidate genes, i.e. TSHR, PRL, PRLHR, INSR, LEPR, IGF1, and NRAMP1 when used as positive controls. The genome scan revealed 82 distinct regions with strong evidence of selection (genome-wide p-value<0.001), including genes known to be associated with eggshell structure and immune system such as CALB1 and GAL cluster, respectively. A substantial proportion of signals was found in poor gene content regions including the most extreme signal on chromosome 1. The observation of multiple signals in a highly selected layer line of chicken is consistent with the hypothesis that egg production is a complex trait controlled by many genes

    Commercial chicken breeds exhibit highly divergent patterns of linkage disequilibrium

    Get PDF
    The analysis of linkage disequilibrium (LD) underpins the development of effective genotyping technologies, trait mapping and understanding of biological mechanisms such as those driving recombination and the impact of selection. We apply the Malécot-Morton model of LD to create additive LD maps that describe the high-resolution LD landscape of commercial chickens. We investigated LD in chickens (Gallus gallus) at the highest resolution to date for broiler, white egg and brown egg layer commercial lines. There is minimal concordance between breeds of fine-scale LD patterns (correlation coefficient &lt;0.21), and even between discrete broiler lines. Regions of LD breakdown, which may align with recombination hot spots, are enriched near CpG islands and transcription start sites (P&lt;2.2 × 10?16), consistent with recent evidence described in finches, but concordance in hot spot locations between commercial breeds is only marginally greater than random. As in other birds, functional elements in the chicken genome are associated with recombination but, unlike evidence from other bird species, the LD landscape is not stable in the populations studied. The development of optimal genotyping panels for genome-led selection programmes will depend on careful analysis of the LD structure of each line of interest. Further study is required to fully elucidate the mechanisms underlying highly divergent LD patterns found in commercial chickens

    Predicting heterosis for egg production traits in crossbred offspring of individual White Leghorn sires using genome-wide SNP data

    Get PDF
    International audienceAbstractBackgroundThe development of a reliable method to predict heterosis would greatly improve the efficiency of commercial crossbreeding schemes. Extending heterosis prediction from the line level to the individual sire level would take advantage of variation between sires from the same pure line, and further increase the use of heterosis in crossbreeding schemes. We aimed at deriving the theoretical expectation for heterosis due to dominance in the crossbred offspring of individual sires, and investigating how much extra variance in heterosis can be explained by predicting heterosis at the individual sire level rather than at the line level. We used 53 421 SNP (single nucleotide polymorphism) genotypes of 3427 White Leghorn sires, allele frequencies of six White Leghorn dam-lines and cage-based records on egg number and egg weight of ~210 000 crossbred hens.ResultsWe derived the expected heterosis for the offspring of individual sires as the between- and within-line genome-wide heterozygosity excess in the offspring of a sire relative to the mean heterozygosity of the pure lines. Next, we predicted heterosis by regressing offspring performance on the heterozygosity excess. Predicted heterosis ranged from 7.6 to 16.7 for egg number, and from 1.1 to 2.3 grams for egg weight. Between-line differences accounted for 99.0% of the total variance in predicted heterosis, while within-line differences among sires accounted for 0.7%.ConclusionsWe show that it is possible to predict heterosis at the sire level, thus to distinguish between sires within the same pure line with offspring that show different levels of heterosis. However, based on our data, variation in genome-wide predicted heterosis between sires from the same pure line was small; most differences were observed between lines. We hypothesise that this method may work better if predictions are based on SNPs with identified dominance effects

    Genome-Wide Analysis of the World's Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection

    Get PDF
    Genomic structure in a global collection of domesticated sheep reveals a history of artificial selection for horn loss and traits relating to pigmentation, reproduction, and body size

    Typing Late Prehistoric Cows and Bulls—Osteology and Genetics of Cattle at the Eketorp Ringfort on the Öland Island in Sweden

    Get PDF
    Human management of livestock and the presence of different breeds have been discussed in archaeozoology and animal breeding. Traditionally osteometrics has been the main tool in addressing these questions. We combine osteometrics with molecular sex identifications of 104 of 340 morphometrically analysed bones in order to investigate the use of cattle at the Eketorp ringfort on the Öland island in Sweden. The fort is dated to 300–1220/50 A.D., revealing three different building phases. In order to investigate specific patterns and shifts through time in the use of cattle the genetic data is evaluated in relation to osteometric patterns and occurrence of pathologies on cattle metapodia. Males were genotyped for a Y-chromosomal SNP in UTY19 that separates the two major haplogroups, Y1 and Y2, in taurine cattle. A subset of the samples were also genotyped for one SNP involved in coat coloration (MC1R), one SNP putatively involved in resistance to cattle plague (TLR4), and one SNP in intron 5 of the IGF-1 gene that has been associated to size and reproduction
    corecore