203 research outputs found

    Possible S-wave Dibaryons in SU(3) Chiral Quark Model

    Full text link
    In the framework of the SU(3) chiral quark model, the S−S-wave baryon-baryon bound states are investigated. It is found that according to the symmetry character of the system and the contributions from chiral fields, there are three types of bound states. The states of the first type, such as [ΩΩ](0,0)[\Omega\Omega]_{(0,0)} and [Ξ∗Ω](0,1/2)[\Xi^{*}\Omega]_{(0,1/2)} are deeply bound dibaryon with narrow widths. The second type states, [Σ∗Δ](0,5/2)[\Sigma^{*} \Delta]_{(0,5/2)},[Σ∗Δ](3,1/2)[\Sigma^{*} \Delta]_{(3,1/2)}, [ΔΔ](0,3)[\Delta\Delta]_{(0,3)} and [ΔΔ](3,0)[\Delta\Delta]_{(3,0)} are also bound states, but with broad widths. [ΞΩ−Ξ∗Ω](1,1/2)[\Xi\Omega - \Xi^{*}\Omega]_{(1,1/2)}, [ΞΞ](0,1)[\Xi\Xi]_{(0,1)}, and [NΩ](2,1/2)[N \Omega]_{(2,1/2)} are third type states. They, like {\em d}, are weakly bound only if the chiral fields can provide attraction between baryons.Comment: Latex files, 1 figur

    The role of five-quark components in gamma decay of the Δ(1232)\Delta(1232)

    Full text link
    An admixture of 10-20 % of qqqq\bar q components in the Delta(1232) resonance is shown to reduce the well known underprediction for the decay width for Delta(1232)->N gamma decay by about half and that of the corresponding helicity amplitudes from a factor ~ 1.7 to ~ 1.5. The main effect is due to the quark-antiquark annihilation transitions qqqq\bar q -> qqq gamma, the consideration of which brings the ratio A_{3/2}/A_{1/2} and consequently the E2/M1 ratio R_{EM} into agreement with the empirical value. Transitions between qqqq\bar q components in the resonance and the nucleon qqqq\bar q->qqqq\bar q gamma are shown to enhance the calculated width by only a few percent, as long as the probability of the qqqq\bar q component of the Delta(1232) and the proton is at most ~ 20 %. The transitions qqqq\bar q->qqqq\bar q gamma between the qqqq\bar q components in the Delta(1232) and the proton do not lead to a nonzero value for R_{EM}

    Bound states of Θ+\Theta^+ in nuclei

    Full text link
    We study the binding energy and the width of the Θ+\Theta^+ in nuclei, associated to the KNK N and KπN K \pi N components. The first one leads to negligible contributions while the second one leads to a sizeable attraction, enough to bind the Θ+\Theta^+ in nuclei. Pauli blocking and binding effects on the KNK N decay reduce considerably the Θ+\Theta^+ decay width in nuclei and medium effects associated to the KπN K \pi N component also lead to a very small width, as a consequence of which one finds separation between the bound levels considerably larger than the width of the states.Comment: Presentation in the 10th International Baryon Conference BARYON0

    The Role of 5-quark Components on the Nucleon Form Factors

    Get PDF
    The covariant quark model is shown to allow a phenomenological description of the neutron electric form factor, G_E^n(Q^2), in the impulse approximation, provided that the wave function contains minor (~ 3 %) admixtures of the lowest sea-quark configurations. While that form factor is not very sensitive to whether the \bar q in the qqqq\bar q component is in the P-state or in the S-state, the calculated nucleon magnetic form factors are much closer to the empirical values in the case of the former configuration. In the case of the electric form factor of the proton, G_E^p(Q^2), a zero appears in the impulse approximation close to 9 GeV^2, when the \bar q is in the P-state. That configuration, which may be interpreted as a pion loop ("cloud") fluctuation, also leads to a clearly better description of the nucleon magnetic moments. When the amplitude of the sea-quark admixtures are set so as to describe the electric form factor of the neutron, the qqqq\bar q admixtures have the phenomenologically desirable feature, that the electric form factor of the proton falls at a more rapid rate with momentum transfer than the magnetic form factor.Comment: To appear in Nuclear Physics

    Genetic engineering of E-coli SE5000 and its potential for Ni2+ bioremediation

    Get PDF
    A genetically engineered Escherichia coli SE5000 strain simultaneously expressing nickel transport system and metallothionein was constructed to accumulate Ni2+ from aqueous solution. Bioaccumulation was fast and followed linearized Langmuir isotherm. Compared with 1.62 mg/g of Ni2+ uptake capacity by original host E. coli cells, genetically engineered E. coli could bind 7.14 mg/g Ni2+, and it accumulated Ni2+ effectively over a broad range of pH (4-10) and the optimal pH was 8.6. The presence of 1000mg/l Na+ and Ca2+ or 50 mg/l Cd2+ and Pb2+ did not decrease Ni2+ bioaccumulation significantly, but Mg2+, Hg2+, Cr3+ and Cu2+ posed severe deleterious influences on Ni2+ uptake by genetically engineered E. coli. Furthermore, the presence of EDTA inhibited nickel bioaccumulation. (C) 2004 Elsevier Ltd. All rights reserved

    Measurement of Trace I-129 Concentrations in CsI Powder and Organic Liquid Scintillator with Accelerator Mass Spectrometry

    Full text link
    Levels of trace radiopurity in active detector materials is a subject of major concern in low-background experiments. Procedures were devised to measure trace concentrations of I-129 in the inorganic salt CsI as well as in organic liquid scintillator with Accelerator Mass Spectrometry (AMS) which leads to improvement in sensitivities by several orders of magnitude over other methods. No evidence of their existence in these materials were observed. Limits of < 6 X 10^{-13} g/g and < 2.6 X 10^{-17} g/g on the contaminations of I-129 in CsI and liquid scintillator, respectively, were derived.These are the first results in a research program whose goals are to develop techniques to measure trace radioactivity in detector materials by AMS.Comment: Proceedings of 10th International Conference on Accelerator Mass Spectrometr

    Effects of momentum conservation on the analysis of anisotropic flow

    Full text link
    We present a general method for taking into account correlations due to momentum conservation in the analysis of anisotropic flow, either by using the two-particle correlation method or the standard flow vector method. In the latter, the correlation between the particle and the flow vector is either corrected through a redefinition (shift) of the flow vector, or subtracted explicitly from the observed flow coefficient. In addition, momentum conservation contributes to the reaction plane resolution. Momentum conservation mostly affects the first harmonic in azimuthal distributions, i.e., directed flow. It also modifies higher harmonics, for instance elliptic flow, when they are measured with respect to a first harmonic event plane such as one determined with the standard transverse momentum method. Our method is illustrated by application to NA49 data on pion directed flow.Comment: RevTeX 4, 10 pages, 1 eps figure. Version accepted for publication in Phys Rev

    Study of qqqccˉqqqc\bar{c} five quark system with three kinds of quark-quark hyperfine interaction

    Full text link
    The low-lying energy spectra of five quark systems uudccˉuudc\bar{c} (I=1/2, S=0) and udsccˉudsc\bar{c} (I=0, S=-1) are investigated with three kinds of schematic interactions: the chromomagnetic interaction, the flavor-spin dependent interaction and the instanton-induced interaction. In all the three models, the lowest five quark state (uudccˉuudc\bar{c} or udsccˉudsc\bar{c}) has an orbital angular momentum L=0 and the spin-parity JP=1/2−J^{P}=1/2^{-}; the mass of the lowest udsccˉudsc\bar{c} state is heavier than the lowest uudccˉuudc\bar{c} state

    RQM description of the charge form factor of the pion and its asymptotic behavior

    Full text link
    The pion charge and scalar form factors, F1(Q2)F_1(Q^2) and F0(Q2)F_0(Q^2), are first calculated in different forms of relativistic quantum mechanics. This is done using the solution of a mass operator that contains both confinement and one-gluon-exchange interactions. Results of calculations, based on a one-body current, are compared to experiment for the first one. As it could be expected, those point-form, and instant and front-form ones in a parallel momentum configuration fail to reproduce experiment. The other results corresponding to a perpendicular momentum configuration (instant form in the Breit frame and front form with q+=0q^+=0) do much better. The comparison of charge and scalar form factors shows that the spin-1/2 nature of the constituents plays an important role. Taking into account that only the last set of results represents a reasonable basis for improving the description of the charge form factor, this one is then discussed with regard to the asymptotic QCD-power-law behavior Q−2Q^{-2}. The contribution of two-body currents in achieving the right power law is considered while the scalar form factor, F0(Q2)F_0(Q^2), is shown to have the right power-law behavior in any case. The low-Q2Q^2 behavior of the charge form factor and the pion-decay constant are also discussed.}Comment: 30 pages, 10 figure

    The ARGO-YBJ Experiment Progresses and Future Extension

    Full text link
    Gamma ray source detection above 30TeV is an encouraging approach for finding galactic cosmic ray origins. All sky survey for gamma ray sources using wide field of view detector is essential for population accumulation for various types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has been established. Significant progresses have been made in the experiment. A large air shower detector array in an area of 1km2 is proposed to boost the sensitivity. Hybrid detection with multi-techniques will allow a good discrimination between different types of primary particles, including photons and protons, thus enable an energy spectrum measurement for individual specie. Fluorescence light detector array will extend the spectrum measurement above 100PeV where the second knee is located. An energy scale determined by balloon experiments at 10TeV will be propagated to ultra high energy cosmic ray experiments
    • 

    corecore