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Genetic engineering ofE. coli SE5000 and its potential
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Abstract

A genetically engineeredEscherichia coliSE5000 strain simultaneously expressing nickel transport system and metallothionein was
constructed to accumulate Ni2+ from aqueous solution. Bioaccumulation was fast and followed linearized Langmuir isotherm. Compared
with 1.62 mg/g of Ni2+ uptake capacity by original hostE. coli cells, genetically engineeredE. coli could bind 7.14 mg/g Ni2+, and it
accumulated Ni2+ effectively over a broad range of pH (4–10) and the optimal pH was 8.6. The presence of 1000 mg/l Na+ and Ca2+

or 50 mg/l Cd2+ and Pb2+ did not decrease Ni2+ bioaccumulation significantly, but Mg2+, Hg2+, Cr3+ and Cu2+ posed severe deleterious
influences on Ni2+ uptake by genetically engineeredE. coli. Furthermore, the presence of EDTA inhibited nickel bioaccumulation.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

With its attractive chemical properties such as high duc-
tility, thermal conductivity, moderate strength and hardness,
nickel has been widely used in battery manufacture, steel
production, alloy synthesis and electroplating. However, the
increase in demand for nickel over the last several decades
has resulted in a large amount of industrial wastes contain-
ing nickel ions which may pose severe effects on natural en-
vironment. Although biosorption is an attractive alternative
to existing methods for toxicity reduction and recovery of
valuable metals from industrial effluents, the nickel ion is a
more recalcitrant pollutant compared with other heavy metal
ions. Many metal tolerant microorganisms have proved to
have a relatively low Ni-binding capacity[1,2]. This is prob-
ably due to the intrinsic chemical properties of nickel ions
leading to steric hindrance of biosorption[3]. Furthermore,
the biosorption process is sensitive to ambient conditions,
e.g. pH and the presence of other inorganic and organic
components[4]. In particular, they lack specificity in metal
binding, which may cause difficulties in the recovery and
recycling of the desired metal(s).
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Genetic engineering technique have the potential to im-
prove or redesign microorganisms so that biological metal
binding systems have higher intrinsic capability and speci-
ficity and are more resistant to ambient conditions. To con-
struct strains that are capable of specifically accumulat-
ing Ni2+ from dilute solution,Escherichia coliSE5000
was genetically engineered to express an Ni2+ transport
system (the products ofnixA gene) [5] and overexpress
metallothionein (MT) as a glutathione S-transferase fusion
protein (GSM-MT) [6]. The nixA gene encodes a 37 kDa
integral membrane protein consisting of eight transmem-
brane domains, which has a very high affinity for Ni2+;
metallothioneins are a class of low-molecular-weight metal
binding proteins rich in cysteine residues, thus capable of
binding a variety of heavy metals including Ni2+. Thus,
the Ni2+ transport system would make the cells specifi-
cally bind Ni2+, and the intracellular overexpressed MTs
would accumulate Ni2+, which would allow bioaccumula-
tion system to be less sensitive to ambient conditions than
biosorption. The present study therefore aimed to investi-
gate the Ni2+ bioaccumulation performance of genetically
engineeredE. coli SE5000 from dilute solution, includ-
ing Ni2+ uptake rate, accumulating isotherm, the effects
of pH, metal chelator, ion strength and other co-existing
metal ions.
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2. Materials and methods

2.1. Plasmids and bacterial strains

This study employed two compatible plasmids, pSUNI
(Deng et al., unpublished) and pGPMT3[7] to express an
Ni2+ transport system and the GST fusion protein of pea MT
(GST-MT), respectively. pSUNI was constructed by insert-
ing anixA coding sequence into pSU39[8] from pUEF202
[5]. pSUNI and pGPMT3 contained Kanr and Ampr se-
quence, respectively.E. coli SE5000 was employed to be
the host strain in this study[9].

Frozen E. coli cells expressing simultaneously both
nickel transport system and metallothionein were inocu-
lated into Luria broth (LB) containing ampicillin (50 mg/l)
and kanamycin (30 mg/l), grown overnight at 37◦C, diluted
to an optical density at 600 nm (OD600) of 0.1–0.3 with
fresh LB containing ampicillin and kanamycin, and incu-
bated at 37◦C with vigorous shaking (180 rpm). Isopropyl
�-d-thiogalactoside (IPTG), 1 M solution in deionized wa-
ter, was added to 1.0 mM concentration when the OD600
reached 0.5–0.7, and after 4 h the cells were harvested by
centrifugation at 10,000×g for 10 min at 4◦C. Original host
E. coli SE5000 cells were also prepared as above, except
for the antibiotics adding and IPTG induction. These orig-
inal hostE. coli cells were used in Ni2+ bioaccumulation
experiments as the control.

2.2. Ni2+ bioaccumulation

E. colicells were harvest by centrifugation (10,000×g for
10 min), washed with 10 mM phosphate buffer, and resus-
pended in Ni2+ solutions with the Ni2+ concentration vary-
ing from 0 to 80 mg/l. After 1 h incubation at 180 rpm and
37◦C, the cells were harvested by centrifugation as above,
dried and digested with 70% trace-metal grade nitric acid for
nickel analysis. For time-dependent accumulation, the cells
were harvested at the different time intervals by filtration
of 10 ml samples on a 0.20�m-pore-diameter nitrocellulose
filter (Millipore).

To determine the effect of the presence of other metal
ions on the bioaccumulation of Ni2+, E. coli cells were
suspended in 10 mg/l Ni2+ solution containing either Na+
(0–1000 mg/l), Mg2+ (0–1000 mg/l), Ca2+ (0–1000 mg/l),
Cu2+ (0–50 mg/l), Pb2+ (0–50 mg/l), Hg2+ (0–50 mg/l),
Cr3+(0–50 mg/l) or Cd2+ (0–50 mg/l), respectively. The pH
of the suspensions was adjusted to the desired value with
0.1 M NaOH or HNO3. EDTA was added (0–2.0 mmol/l)
to investigate the effect of metal chelator on Ni2+ bioaccu-
mulation. During these experiments, the stirred speed and
temperature were kept constant at 180 rpm and 37◦C, re-
spectively, unless otherwise specified. All treatments were
in triplicate. All chemicals used in this study were at least of
analytical grade. Chloride salts of nickel, sodium, magne-
sium, calcium, copper or cadmium, nitrate salts of mercury
or lead, and chromium sulphate were used to prepare solu-

tions of these metals by molecular-weight calculation pro-
viding single metal ion solutions at desired concentrations
in deionized water.

To prevent metal contamination, all glassware were
soaked in 20% nitric acid overnight and rinsed three times
with deionized water before complete drying.

2.3. Analytical techniques

Ni2+ was measured by atomic absorption spectrophotom-
etry. The dry weight of cells was determined from the OD600
using the value of 0.396 g dry weight per liter of OD 1.0.
Nickel binding capacities were expressed as milligrams Ni2+
accumulated by gram dry weight of cells.

3. Results and discussion

3.1. Time course of Ni2+ bioaccumulation

A time course assay was carried out with induced cells as
well as original hostE. coli cells (as the control) to measure
uptake rate of Ni2+ by the genetically engineeredE. coli.
The result (Fig. 1) showed that the rates of nickel uptake by
these two types of cells were rapid and 90% of the maxi-
mum accumulations were reached within the first 5 min. Af-
ter the rapid initial uptake, further bioaccumulation by both
strains occurred slowly and reached an equilibrium after 1 h
of treatment. From inspection ofFig. 1, it was also noted
that original hostE. coli cells reached the equilibrium a bit
faster than genetically engineeredE. coli cells. This might
be because only surface adsorption, an immediate process,
occurred on the surface of the original hostE. coli cells,
while intracellular bioaccumulation process by genetically
engineeredE. coli cells required more time than surface ad-
sorption to reach equilibrium.

Fig. 1. Time course of Ni2+ uptake by genetically engineeredE. coli
SE5000 and original hostE. coli SE5000 from 10 mg/l Ni2+ solutions.
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Fig. 2. Ni2+ bioaccumulation isotherms by genetically engineeredE. coli
SE5000 and original hostE. coli SE5000.

3.2. Bioaccumulation isotherm

Fig. 2 displays the result of a 1 h incubation ofE. coli
cells with solutions containing different concentrations of
Ni2+. It was clear that Ni2+ bioaccumulation by the genet-
ically engineered cells expressing simultaneously both the
nickel transport system and metallothionein was dramati-
cally enhanced from 1.59 mg/g by original hostE. coli cells
to 7.05 mg/g, showing a more than four-fold increase. Ap-
parently the increase of Ni2+ accumulation by genetically
engineeredE. colicells was attributable to the specific nickel
transport system near the cell membrane and metallothionein
in cytoplasm.

As shown inFig. 2, the isotherms for Ni2+ accumulation
were of Langmuir type, as represented by:

Ce

q
= k

qm
+ 1

qm
Ce

whereCe is final or equilibrium concentration of Ni2+ (mg
Ni2+/l), q is the bioaccumulation of Ni2+ (mg Ni2+/g cell
dry weight),qm is the maximum bioaccumulation capacity
(mg Ni2+/g cell dry weight), andk is the dissociation con-
stant (mg Ni2+/l). Linear plots ofCe/q againstCe (Fig. 3)
resulted from the Langmuir equation to the bioaccumulation
in Fig. 2, showing that they were good empirical represen-
tations of the bioaccumulation data, whereqm values were
7.14 and 1.62 mg/g, respectively for genetically engineered
E. coli cells and original hostE. coli cells. Ni2+ uptake abil-
ities of some other biomasses are shown inTable 1.

3.3. Effect of pH on Ni2+ bioaccumulation

pH variation in contaminated water often affects metal
clean-up processes. Uptake of metals by organisms is highly
dependent on their bioavailability, and bioavailability is re-
lated to the speciation and partitioning of a metal, which are
greatly influenced by pH. A high pH may result in the for-

Fig. 3. Linearized Langmuir isotherm plot for Ni2+ bioaccumulation by
genetically engineeredE. coli SE5000 and originalE. coli SE5000.

mation of stable metal complexes, e.g. hydroxides, oxides,
and carbonates, making the heavy metals less available for
removal by ion exchange resins or biosorbents. A low pH
may increase the mobility of heavy metals and therefore may
enhance their availability. On the other hand, cation compe-
tition due to the presence of excess protons often dramati-
cally decreases adsorption of heavy metals to biosorbents.

The effect of pH on the biosorption of Ni2+ has been
widely investigated. Lopez et al.[16] indicated that 92% of
nickel biosorption by freePseudomonas fluorescens4F39
was lost as the pH of the solution changed from 8 to 6.5,
while a 48% drop of Ni2+ biosorption byAzolla filiculoides
occurred as pH varied from 6.5 to 3.0[17]. Fig. 4 shows
the pH profile of Ni2+ bioaccumulation by genetically en-
gineeredE. coli cells and original hostE. coli cells. Within
the pH range from 4 to 10, genetically engineeredE. coli
cells displayed resistance to pH variation to a certain extent
by retaining more than 3.92 mg/g of Ni2+ bioaccumula-
tion and the maximum reduction was 38% at pH 4. To the
contrary, original hostE. coli cells which did not express
nickel transport system and metallothionein showed up to
77% decrease of Ni2+ binding capacity within the tested

Table 1
Maximum nickel binding capacities of some biomasses

Biomass qmax (mg/g) References/
source

Arthrobactersp. 13.0 [10]
Medicago sativa 4.10 [11]
Aspergillus niger(ABM-1) 19.6 [12]
Chlorella vulgaris 1.282 [13]
Chlorella miniata 2.985 [13]
Kandelia candel 0.472 [14]
Fecus vesiculosus 2.85 [15]
Genetically engineeredE. coli SE5000

expressing both nickel transport
system and metallothionein

7.14 This study

Original hostE. coli SE5000 1.62 This study
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Fig. 4. pH profile of Ni2+ bioaccumulation from 10 mg/l Ni2+ solutions by
genetically engineeredE. coli SE5000 and original hostE. coli SE5000.

pH range, indicating a highly pH-dependent biosorption
performance which was in accord with previous studies.
The optimal pH for genetically engineeredE. coli was
8.6 with Ni2+ binding capacity up to 6.38 mg/g, while
7.2 was the best pH for original hostE. coli cells. No
precipitation was observed when pH reached 9.0 in our
study.

3.4. Effect of Na+, Mg2+, Ca2+ on Ni2+ bioaccumulation

Sodium, magnesium, and calcium are often found in con-
taminated waters. The presence of these cations may reduce
the efficiency of ion exchange resins or biosorbents by ele-
vating the ionic strength and/or by their competitive binding
to the active sites of the ion exchange resins or biosorbents
[18]. Chang and Hong[4] reported the mercury biosorption
capacity ofPseudomonas aeruginosaPU21 (Rip64) was
reduced by over 90% in the presence of 150 mM sodium
chloride. To determine the effect of these cations on Ni2+
bioaccumulation by the genetically engineeredE. coli cell,
bioaccumulations were performed at various concentrations
of Na+, Ca2+ or Mg2+, respectively.Fig. 5 shows that in-
creases in Na+ and Ca2+ concentrations diminished Ni2+
accumulation to the similar extent. 39 and 42% of Ni2+ up-
take reductions occurred, respectively as the concentrations
of Na+ and Ca2+ reached 1000 mg/l, indicating that the pres-
ence of Na+ and Ca2+ posed a negative effect on Ni2+ bioac-
cumulation by genetically engineeredE. coli cells. How-
ever, 61 and 58% of Ni2+ binding capacity having been
retained still suggested the higher selectivity against these
two cations by genetically engineeredE. colicells compared
with biosorbents and ion exchange resins.

The presence of Mg2+ however accounted for a severe
detrimental effect on Ni2+ bioaccumulation by genetically
engineeredE. coli. A rapid decrease of Ni2+ uptake from
6 to 5.15 mg/g, and further to 4.06 mg/g occurred as Mg2+
concentration reached only 10 and 30 mg/l, respectively,

Fig. 5. Effect of Na+, Ca2+, Mg2+ on Ni2+ bioaccumulation from 10 mg/l
Ni2+ solutions by genetically engineeredE. coli SE5000.

and genetically engineeredE. coli cells lost almost all the
Ni2+ accumulating capacity with Mg2+ concentration up to
200 mg/l. Such a serious deleterious effect of Mg2+ on Ni2+
uptake might be due to the interaction of Mg2+ to Ni2+ up-
take system of microbes. Different from other heavy met-
als, nickel is an essential nutrient at low levels, therefore
microbes have to absorb nickel from environment. Trans-
port systems capable of nickel uptake have been identified
and characterized in some microorganisms includingE. coli
[19], and some of them are magnesium-dependent systems.
Webb [20] reported that under conditions of magnesium
starvation, transport of Ni2+ in E. coli was through a mag-
nesium transporter; as Mg2+ concentration increased, the
transport system delivered Mg2+ instead of Ni2+. Therefore,
Mg2+ might inhibit Ni2+ uptake not only through endoge-
nous transporters as previously studied, but also through the
high Ni2+ affinity system expressed bynixA gene in genet-
ically engineeredE. coli cells.

3.5. Influence of other heavy metals on Ni2+
bioaccumulation

Compared with some other heavy metal ions, the
Ni-binding capacity of many metal tolerant microorganisms
was relatively low as mentioned above. An investigation of
the accumulation of heavy metals by a variety of microor-
ganisms showed that among the 83 microorganisms tested
[21], Streptomyces albusHUT6047 was the best strain to
accumulate Ni2+ with a maximum biosorption capacity
of 1.057 mg/g from a solution containing 8 mg/l nickel
and eight other heavy metal ions, much less than copper,
mercury, lead, cobalt, and uranium. To evaluate Ni2+ se-
lectivity over other heavy metals by genetically engineered
E. coli, bioaccumulation experiments were processed in the
presence of various concentrations of Hg2+, Pd2+, Cd2+,
Cr3+ or Cu2+, respectively. As illustrated inFig. 6, the
genetically engineeredE. coli cells still retained more than
55% of Ni2+ bioaccumulation activity as the concentra-
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Fig. 6. Effect of Cd2+, Cu2+, Hg2+, Pb2+ and Cr3+ on Ni2+ bioaccu-
mulation from 10 mg/l Ni2+ solution by genetically engineeredE. coli
SE5000.

tions of lead and cadmium reached 50 mg/l, whereas 90
and 75% reductions of Ni2+ uptake capacities were shown
with the concentrations of chromium (III) and copper up
to 25 and 50 mg/l, respectively, indicating that chromium
(III) and copper inhibited Ni2+ bioaccumulation by genet-
ically engineeredE. coli cells to a larger extent than lead
and cadmium. Mercury posed the most serious inhibition
on Ni2+ uptake with 97% reduction as Hg2+ concentration
was 25 mg/l. The difference of inhibition by these heavy
metals might somewhat correspond to the affinities of heavy
metals to metallothionein. Winge and Nielson[22] reported
that the order in terms of decreasing affinity of heavy metal
to metallothionein was Hg > Cu > Cd > Zn > Ni > Co.
However, it is still unknown why the inhibition of cadmium
was not as severe as expected in our study.

3.6. Effect of EDTA on Ni2+ bioaccumulation

Metal chelators or complexing agents are frequently in-
volved in metal contamination. The presence of these sub-
stances may form tight complexes with metals, which is
thought to decrease their bioavailability and therefore cause
difficulty in metal recovery by common treatments such as
ion exchange and biosorption. To investigate whether Ni2+
bioaccumulation system is resistant to the presence of metal
chelator, genetically engineeredE. coli SE5000 cells were
suspended in 10 mg/l Ni2+ solution with EDTA from 0 to
2 mmol/l. The result (Fig. 7) showed that addition of EDTA
inhibited Ni2+ accumulating seriously. As the concentration
of EDTA reached 2 mmol/l, only 5% Ni2+ binding capacity
of the induced cells was retained. It indicated that the tight
complex formed between EDTA and nickel was not avail-
able to the genetically engineered cells. However, Chen and
Wilson [6] found genetically engineered bacteria which ex-
press metallothionein and an Hg2+ transport system could
accumulate Hg2+ effectively in the presence of EDTA. The

Fig. 7. Effect of EDTA on Ni2+ bioaccumulation from 10 mg/l Ni2+
solution by genetically engineeredE. coli SE5000.

differences between the Ni2+ accumulating strain and the
Hg2+ accumulating strain may be due to the forms in which
the metal and metal–EDTA complex are transported. Al-
though thenixA protein has a much higher affinity for Ni2+
than the merT–merP system has for mercury[23], the trans-
port in the Hg2+ accumulating strain might involve uptake
of both Hg2+ and Hg2+–EDTA complex, while the Ni2+
accumulating strain was only able to transport free Ni2+ in
aqueous solutions.

4. Conclusions

The following conclusions were drawn from the present
study.

1. Genetically engineeredE. coliSE5000 could bioaccumu-
late Ni2+ rapidly from aqueous solution, and bioaccumu-
lation process followed linearized Langmuir isotherm.

2. The recombinantE. coli SE5000 accumulated Ni2+ ef-
fectively over a broad pH range (4–10), suggesting that
the Ni2+ uptake process was resistant to pH variations.

3. 1000 mg/l of Na+ or Ca2+, and 50 mg/l of Cd2+ or
Pb2+ did not decrease Ni2+ uptake significantly, while
200 mg/l of Mg2+, and 50 mg/l of Cu2+, Cr3+ or Hg2+
inhibited Ni2+ uptake to a large extent.

4. The presence of EDTA largely reduced Ni2+ uptake by
recombinantE. coli SE5000.
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