308 research outputs found

    Surprising variations in the rotation of the chemically peculiar stars CU Virginis and V901 Orionis

    Get PDF
    CU Vir and V901 Ori belong among these few magnetic chemically peculiar stars whose rotation periods vary on timescales of decades. We aim to study the stability of the periods in CU Vir and V901 Ori using all accessible observational data containing phase information. We collected all available relevant archived observations supplemented with our new measurements of these stars and analysed the period variations of the stars using a novel method that allows for the combination of data of diverse sorts. We found that the shapes of their phase curves were constant, while the periods were changing. Both stars exhibit alternating intervals of rotational braking and acceleration. The rotation period of CU Vir was gradually shortening until the year 1968, when it reached its local minimum of 0.52067198 d. The period then started increasing, reaching its local maximum of 0.5207163 d in the year 2005. Since that time the rotation has begun to accelerate again. We also found much smaller period changes in CU Vir on a timescale of several years. The rotation period of V901 Ori was increasing for the past quarter-century, reaching a maximum of 1.538771 d in the year 2003, when the rotation period began to decrease. A theoretically unexpected alternating variability of rotation periods in these stars would remove the spin-down time paradox and brings a new insight into structure and evolution of magnetic upper-main-sequence stars.Comment: 5 pages, 3 figure

    The radio lighthouse CU Virginis: the spindown of a single main sequence star

    Get PDF
    The fast rotating star CU Virginis is a magnetic chemically peculiar star with an oblique dipolar magnetic field. The continuum radio emission has been interpreted as gyrosyncrotron emission arising from a thin magnetospheric layer. Previous radio observations at 1.4 GHz showed that a 100% circular polarized and highly directive emission component overlaps to the continuum emission two times per rotation, when the magnetic axis lies in the plane of the sky. This sort of radio lighthouse has been proposed to be due to cyclotron maser emission generated above the magnetic pole and propagating perpendicularly to the magnetic axis. Observations carried out with the Australia Telescope Compact Array at 1.4 and 2.5 GHz one year after this discovery show that this radio emission is still present, meaning that the phenomenon responsible for this process is steady on a timescale of years. The emitted radiation spans at least 1 GHz, being observed from 1.4 to 2.5 GHz. On the light of recent results on the physics of the magnetosphere of this star, the possibility of plasma radiation is ruled out. The characteristics of this radio lighthouse provides us a good marker of the rotation period, since the peaks are visible at particular rotational phases. After one year, they show a delay of about 15 minutes. This is interpreted as a new abrupt spinning down of the star. Among several possibilities, a quick emptying of the equatorial magnetic belt after reaching the maximum density can account for the magnitude of the breaking. The study of the coherent emission in stars like CU Vir, as well as in pre main sequence stars, can give important insight into the angular momentum evolution in young stars. This is a promising field of investigation that high sensitivity radio interferometers such as SKA can exploit.Comment: Accepted to MNRAS, 8 pages, 7 figures, updated versio

    A Tight Upper Limit on Oscillations in the Ap star Epsilon Ursae Majoris from WIRE Photometry

    Full text link
    Observations of Epsilon UMa obtained with the star tracker on the Wide Field Infrared Explorer (WIRE) satellite during a month in mid-2000 are analyzed. This is one of the most precise photometry of an Ap star. The amplitude spectrum is used to set an upper limit of 75 parts per million for the amplitude of stellar pulsations in this star unless it accidentally oscillates with a single mode at the satellite orbit, its harmonics or their one day aliases. This is the tightest limit put on the amplitude of oscillations in an Ap star. As the rotation period of Epsilon UMa is relatively short (5.1 d), it cannot be argued that the observations were made at a wrong rotational phase. Our results thus support the idea that some Ap stars do not pulsate at all.Comment: 4 pages, 4 figures, 2 style files, accepted for publication in ApJ

    Observations of radio pulses from CU Virginis

    Get PDF
    The magnetic chemically peculiar star CU Virginis is a unique astrophysical laboratory for stellar magnetospheres and coherent emission processes. It is the only known main sequence star to emit a radio pulse every rotation period. Here we report on new observations of the CU Virginis pulse profile in the 13 and 20\,cm radio bands. The profile is known to be characterised by two peaks of 100%\% circularly polarised emission that are thought to arise in an electron-cyclotron maser mechanism. We find that the trailing peak is stable at both 13 and 20\,cm, whereas the leading peak is intermittent at 13\,cm. Our measured pulse arrival times confirm the discrepancy previously reported between the putative stellar rotation rates measured with optical data and with radio observations. We suggest that this period discrepancy might be caused by an unknown companion or by instabilities in the emission region. Regular long-term pulse timing and simultaneous multi-wavelength observations are essential to clarify the behaviour of this emerging class of transient radio source.Comment: Accepted by MNRAS Letters; 5 pages, 2 figures, 3 table

    PRIC295, a Nuclear Receptor Coactivator, Identified from PPARα-Interacting Cofactor Complex

    Get PDF
    The peroxisome proliferator-activated receptor-α (PPARα) plays a key role in lipid metabolism and energy combustion. Chronic activation of PPARα in rodents leads to the development of hepatocellular carcinomas. The ability of PPARα to induce expression of its target genes depends on Mediator, an evolutionarily conserved complex of cofactors and, in particular, the subunit 1 (Med1) of this complex. Here, we report the identification and characterization of PPARα-interacting cofactor (PRIC)-295 (PRIC295), a novel coactivator protein, and show that it interacts with the Med1 and Med24 subunits of the Mediator complex. PRIC295 contains 10 LXXLL signature motifs that facilitate nuclear receptor binding and interacts with PPARα and five other members of the nuclear receptor superfamily in a ligand-dependent manner. PRIC295 enhances the transactivation function of PPARα, PPARγ, and ERα. These data demonstrate that PRIC295 interacts with nuclear receptors such as PPARα and functions as a transcription coactivator under in vitro conditions and may play an important role in mediating the effects in vivo as a member of the PRIC complex with Med1 and Med24

    Hospital usage of TOXBASE in Great Britain:Temporal trends in accesses 2008 to 2015

    Get PDF
    Aim: Examining temporal trends in accesses to the UK's National Poison Information Service's TOXBASE database in Britain. Methods: Generalised additive models were used to examine trends in daily numbers of accesses to TOXBASE from British emergency departments between January 2008 and December 2015. Day-of-the-week, seasonality and long term trends were analysed at national and regional levels (Wales, Scotland and the 9 English Government Office Regions). Results: The long-term trend in daily accesses increases from 2.8 (95% CI:2.6, 3.0) per user on 1st January 2008 to 4.6 (95% CI:4.3, 4.9) on 31st December 2015, with small but significant differences in population-corrected accesses by region (p<0.001). There are statistically significant seasonal and day of the week patterns (p<0.001) across all regions. Accesses are 18 % (95% CI:14%, 22%) higher in summer than in January and at the weekend compared to weekdays in all regions; there is a 7.5% (95% CI:6.1%, 8.9%) increase between Friday and Sunday. Conclusions: There are consistent in-year patterns in access to TOXBASE indicating potential seasonal patterns in poisonings in Britain, with location-dependant rates of usage. This novel descriptive work lays the basis for future work on the interaction of TOXBASE use with emergency admission of patients into hospital

    Frequency responses of age-structured populations: Pacific salmon as an example

    Full text link
    Increasing evidence of the effects of changing climate on physical ocean conditions and long-term changes in fish populations adds to the need to understand the effects of stochastic forcing on marine populations. Cohort resonance is of particular interest because it involves selective sensitivity to specific time scales of environmental variability, including that of mean age of reproduction, and, more importantly, very low frequencies (i.e., trends). We present an age-structured model for two Pacific salmon species with environmental variability in survival rate and in individual growth rate, hence spawning age distribution. We use computed frequency response curves and analysis of the linearized dynamics to obtain two main results. First, the frequency response of the population is affected by the life history stage at which variability affects the population; varying growth rate tends to excite periodic resonance in age structure, while varying survival tends to excite low-frequency fluctuation with more effect on total population size. Second, decreasing adult survival strengthens the cohort resonance effect at all frequencies, a finding that addresses the question of how fishing and climate change will interact.Comment: much revised: the version accepted by Theoretical Population Biolog

    Revisiting the Rigidly Rotating Magnetosphere model for sigma Ori E. I. Observations and Data Analysis

    Full text link
    We have obtained 18 new high-resolution spectropolarimetric observations of the B2Vp star sigma Ori E with both the Narval and ESPaDOnS spectropolarimeters. The aim of these observations is to test, with modern data, the assumptions of the Rigidly Rotating Magnetosphere (RRM) model of Townsend & Owocki (2005), applied to the specific case of sigma Ori E by Townsend et al. (2005). This model includes a substantially offset dipole magnetic field configuration, and approximately reproduces previous observational variations in longitudinal field strength, photometric brightness, and Halpha emission. We analyze new spectroscopy, including H I, He I, C II, Si III and Fe III lines, confirming the diversity of variability in photospheric lines, as well as the double S-wave variation of circumstellar hydrogen. Using the multiline analysis method of Least-Squares Deconvolution (LSD), new, more precise longitudinal magnetic field measurements reveal a substantial variance between the shapes of the observed and RRM model time-varying field. The phase resolved Stokes V profiles of He I 5876 A and 6678 A lines are fit poorly by synthetic profiles computed from the magnetic topology assumed by Townsend et al. (2005). These results challenge the offset dipole field configuration assumed in the application of the RRM model to sigma Ori E, and indicate that future models of its magnetic field should also include complex, higher-order components.Comment: 13 pages, 8 figures. Accepted for publication in MNRA

    Modelling the light variability of the Ap star epsilon Ursae Majoris

    Full text link
    We simulate the light variability of the Ap star epsUMa using the observed surface distributions of Fe, Cr, Ca, Mn, Mg, Sr and Ti obtained with the help of Doppler Imaging technique. Using all photometric data available we specified light variations of epsUMa modulated by its rotation from far UV to IR. We employed the LLmodels stellar model atmosphere code to predict the light variability in different photometric systems. The rotational period of epsUMa is refined to 5d088631(18). It is shown that the observed light variability can be explained as a result of the redistribution of radiative flux from the UV spectral region to the visual caused by the inhomogeneous surface distribution of chemical elements. Among seven mapped elements, only Fe and Cr significantly contribute to the amplitude of the observed light variability. In general, we find a very good agreement between theory and observations. We confirm the important role of Fe and Cr to the magnitude of the well-known depression around 5200 \AA\ through the analysis of the peculiar aa-parameter. Finally, we show that the abundance spots of considered elements cannot explain the observed variability in near UV and β\beta index which are likely due to some other causes. The inhomogeneous surface distribution of chemical elements can explain most of the observed light variability of the A-type CP star epsUMa.Comment: Accepted in A&A, 10 pages, 9 figures, 3 table
    corecore