58 research outputs found

    Research on Students\u27 Conceptual Understanding of Geology/Solid Earth Science Content

    Get PDF
    Solid Earth is a broad concept, representing processes at the surface of the Earth, as well as the subsurface all the way to the solid inner core. Fields of study encompassed in this domain include geomorphology, historical geology, mineralogy, petrology, stratigraphy, structural geology – all topics that are touched upon in introductory coursework, and constitute the core of an undergraduate geology curriculum. Combined with cognate coursework in biology, chemistry, physics, and mathematics, the conceptual load in the Solid Earth curriculum is significant. The risks of poor understanding of solid Earth concepts are non-trivial, ranging from the economic costs of commodities and energy to the potentially fatal impact of hazards from mass-wasting, flooding, volcanic activity, and earthquakes. As a result, undergraduate geoscience studies are faced with two main problems: (a) the determination of students\u27 solid Earth misconceptions when they participate in geoscience coursework, including their persistence and the means to address them, and (b) the determination of optimal learning progressions in geoscience instruction to accommodate preparation of geoscience professionals and Earth science teachers, as well as general education students. In this theme chapter, these two grand challenges are explored and recommended strategies are proposed to address them

    Closing the Loop: Communication for Transformation of Geoscience Teaching Practice

    Get PDF
    The goal of the GER Framework is to improve teaching and learning about the Earth, by focusing the power of Geoscience Education Research (GER) on the set of ambitious, high-priority, community-endorsed grand challenges outlined in this document. This goal has an underlying assumption - that research results are effectively shared with educators and are used to reform teaching practice; consistent with the feedback loop on the strength of evidence pyramid. Closing this loop is intimately tied to research theme on Institutional Change and Professional Development. However, closing this loop has a broader scope as well. Raising awareness of research results, and then applying the research results, will require engaged, respectful dialogue as well as strategic communication to extend the community of reflective practitioners and gain needed support from administrators. This chapter expands on strategies for communication

    Synthesis: Discussion and Implications

    Get PDF
    This project was a formidable undertaking, necessary to position our community to achieve an important goal: to improve undergraduate teaching and learning about the Earth by focusing the power of Geoscience Education Research (GER) on a set of ambitious, high-priority, community-endorsed grand challenges. Working groups, through examination of the literature and with the aid of reviewers\u27 insights, identified two to five grand challenges for each of the ten research themes. The thematic grand challenges illuminate interconnected paths for future GER. Collective this creates a guiding framework to harness the power of GER to improve undergraduate teaching and learning about the Earth. While the individual theme chapters lay out the rationales for those large-scale grand challenge research questions and offer strategies for addressing them, here the purpose is to summarize and synthesize - to highlight thematic research priorities and synergies that may be avenues for research efficiencies and powerful outcomes

    Ozone loss derived from balloon-borne tracer measurements and the SLIMCAT CTM

    Get PDF
    Balloon-borne measurements of CFC-11 (on flights of the DIRAC in situ gas chromatograph and the DESCARTES grab sampler), ClO and O3 were made during the 1999/2000 winter as part of the SOLVE-THESEO 2000 campaign. Here we present the CFC-11 data from nine flights and compare them first with data from other instruments which flew during the campaign and then with the vertical distributions calculated by the SLIMCAT 3-D CTM. We calculate ozone loss inside the Arctic vortex between late January and early March using the relation between CFC-11 and O3 measured on the flights, the peak ozone loss (1200 ppbv) occurs in the 440–470 K region in early March in reasonable agreement with other published empirical estimates. There is also a good agreement between ozone losses derived from three independent balloon tracer data sets used here. The magnitude and vertical distribution of the loss derived from the measurements is in good agreement with the loss calculated from SLIMCAT over Kiruna for the same days

    Cortical-Bone Fragility - Insights from sFRP4 Deficiency in Pyle's Disease

    Get PDF
    BACKGROUND Cortical-bone fragility is a common feature in osteoporosis that is linked to non - vertebral fractures. Regulation of cortical-bone homeostasis has proved elusive. The study of genetic disorders of the skeleton can yield insights that fuel experimental therapeutic approaches to the treatment of rare disorders and common skeletal ailments. METHODS We evaluated four patients with Pyle’s disease, a genetic disorder that is characterized by cortical-bone thinning, limb deformity, and fractures; two patients were examined by means of exome sequencing, and two were examined by means of Sanger se - quencing. After a candidate gene was identified, we generated a knockout mouse model that manifested the phenotype and studied the mechanisms responsible for altered bone architecture. RESULTS In all affected patients, we found biallelic truncating mutations in SFR P4 , the gene encoding secreted frizzled-related protein 4, a soluble Wnt inhibitor. Mice deficient in Sfrp4 , like persons with Pyle’s disease, have increased amounts of trabecular bone and unusually thin cortical bone, as a result of differential regulation of Wnt and bone morphogenetic protein (BMP) signaling in these two bone compartments. Treat - ment of Sfrp4- deficient mice with a soluble Bmp2 receptor (RAP-661) or with anti - bodies to sclerostin corrected the cortical-bone defect. CONCLUSIONS Our study showed that Pyle’s disease was caused by a deficiency of sFRP4, that cortical- bone and trabecular-bone homeostasis were governed by different mechanisms, and that sFRP4-mediated cross-regulation between Wnt and BMP signaling was critical for achieving proper cortical-bone thickness and stability. (Funded by the Swiss Na - tional Foundation and the National Institutes of Health.

    Dark sectors 2016 Workshop: community report

    Get PDF
    This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years

    US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

    Get PDF
    This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference

    First results of the CUORICINO experiment

    Get PDF
    Preliminary results on double beta decay (DBD) of 130 Te, obtained in the first run of the CUORICINO experiment are presented. The set-up consists of an array of 62 crystals of TeO 2 operating as bolometers in a deep underground dilution unit at a temperature of about 10 mK. Due to a total mass of about 41 kg, CUORICINO represents by far the most massive running cryogenic mass to search for rare events. The achieved lower limit on the neutrinoless DBD is 5.5⋅10 23 years, that corresponds to a limit on the Majorana effective mass between 0.37 and 1.9 eV. Performances of the detectors together with the sensitivity estimation are discussed

    Metabolic shift underlies recovery in reversible infantile respiratory chain deficiency.

    Get PDF
    Reversible infantile respiratory chain deficiency (RIRCD) is a rare mitochondrial myopathy leading to severe metabolic disturbances in infants, which recover spontaneously after 6-months of age. RIRCD is associated with the homoplasmic m.14674T>C mitochondrial DNA mutation; however, only ~ 1/100 carriers develop the disease. We studied 27 affected and 15 unaffected individuals from 19 families and found additional heterozygous mutations in nuclear genes interacting with mt-tRNAGlu including EARS2 and TRMU in the majority of affected individuals, but not in healthy carriers of m.14674T>C, supporting a digenic inheritance. Our transcriptomic and proteomic analysis of patient muscle suggests a stepwise mechanism where first, the integrated stress response associated with increased FGF21 and GDF15 expression enhances the metabolism modulated by serine biosynthesis, one carbon metabolism, TCA lipid oxidation and amino acid availability, while in the second step mTOR activation leads to increased mitochondrial biogenesis. Our data suggest that the spontaneous recovery in infants with digenic mutations may be modulated by the above described changes. Similar mechanisms may explain the variable penetrance and tissue specificity of other mtDNA mutations and highlight the potential role of amino acids in improving mitochondrial disease

    Stratosphere‐troposphere coupling and annular mode variability in chemistry‐climate models

    Get PDF
    The internal variability and coupling between the stratosphere and troposphere in CCMVal‐2 chemistry‐climate models are evaluated through analysis of the annular mode patterns of variability. Computation of the annular modes in long data sets with secular trends requires refinement of the standard definition of the annular mode, and a more robust procedure that allows for slowly varying trends is established and verified. The spatial and temporal structure of the models’ annular modes is then compared with that of reanalyses. As a whole, the models capture the key features of observed intraseasonal variability, including the sharp vertical gradients in structure between stratosphere and troposphere, the asymmetries in the seasonal cycle between the Northern and Southern hemispheres, and the coupling between the polar stratospheric vortices and tropospheric midlatitude jets. It is also found that the annular mode variability changes little in time throughout simulations of the 21st century. There are, however, both common biases and significant differences in performance in the models. In the troposphere, the annular mode in models is generally too persistent, particularly in the Southern Hemisphere summer, a bias similar to that found in CMIP3 coupled climate models. In the stratosphere, the periods of peak variance and coupling with the troposphere are delayed by about a month in both hemispheres. The relationship between increased variability of the stratosphere and increased persistence in the troposphere suggests that some tropospheric biases may be related to stratospheric biases and that a well‐simulated stratosphere can improve simulation of tropospheric intraseasonal variability
    corecore