70 research outputs found

    On Mixed-Initative Planning and Control for Autonomous Underwater Vehicles

    Get PDF
    Supervision and control of Autonomous underwater vehicles (AUVs) has traditionally been focused on an operator determining a priori the sequence of waypoints of a single vehicle for a mission. As AUVs become more ubiquitous as a scientific tool, we envision the need for controlling multiple vehicles which would impose less cognitive burden on the operator with a more abstract form of human-in-the-loop control. Such mixed-initiative methods in goal-oriented commanding are new for the oceanographic domain and we describe the motivations and preliminary experiments with multiple vehicles operating simultaneously in the water, using a shore-based automated planner

    A Goal-Oriented Autonomous Controller for Space Exploration

    Get PDF
    The Goal-Oriented Autonomous Controller (GOAC) is the envisaged result of a multi-institutional effort within the on-going Autonomous Controller R&D activity funded by ESA ESTEC. The objective of this effort is to design, build and test a viable on-board controller to demonstrate key concepts in fully autonomous operations for ESA missions. This three-layer architecture is an integrative effort to bring together four mature technologies; for a functional layer, a verification and validation system, a planning engine and a controller framework for planning and execution which uses the sense-plan-act paradigm for goal oriented autonomy. GOAC as a result will generate plans in situ, deterministically dispatch activities for execution, and recover from off-nominal conditions

    Deriving a mutation index of carcinogenicity using protein structure and protein interfaces

    Get PDF
    With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/

    Integrated monitoring of mola mola behaviour in space and time

    Get PDF
    Over the last decade, ocean sunfish movements have been monitored worldwide using various satellite tracking methods. This study reports the near-real time monitoring of finescale (< 10 m) behaviour of sunfish. The study was conducted in southern Portugal in May 2014 and involved satellite tags and underwater and surface robotic vehicles to measure both the movements and the contextual environment of the fish. A total of four individuals were tracked using custom-made GPS satellite tags providing geolocation estimates of fine-scale resolution. These accurate positions further informed sunfish areas of restricted search (ARS), which were directly correlated to steep thermal frontal zones. Simultaneously, and for two different occasions, an Autonomous Underwater Vehicle (AUV) videorecorded the path of the tracked fish and detected buoyant particles in the water column. Importantly, the densities of these particles were also directly correlated to steep thermal gradients. Thus, both sunfish foraging behaviour (ARS) and possibly prey densities, were found to be influenced by analogous environmental conditions. In addition, the dynamic structure of the water transited by the tracked individuals was described by a Lagrangian modelling approach. The model informed the distribution of zooplankton in the region, both horizontally and in the water column, and the resultant simulated densities positively correlated with sunfish ARS behaviour estimator (r(s) = 0.184, p < 0.001). The model also revealed that tracked fish opportunistically displace with respect to subsurface current flow. Thus, we show how physical forcing and current structure provide a rationale for a predator's finescale behaviour observed over a two weeks in May 2014

    L-Type Ca2+ Channel Function Is Linked to Dystrophin Expression in Mammalian Muscle

    Get PDF
    BACKGROUND: In dystrophic mdx skeletal muscle, aberrant Ca2+ homeostasis and fibre degeneration are found. The absence of dystrophin in models of Duchenne muscular dystrophy (DMD) has been connected to altered ion channel properties e.g. impaired L-type Ca2+ currents. In regenerating mdx muscle, 'revertant' fibres restore dystrophin expression. Their functionality involving DHPR-Ca2+-channels is elusive. METHODS AND RESULTS: We developed a novel 'in-situ' confocal immuno-fluorescence and imaging technique that allows, for the first time, quantitative subcellular dystrophin-DHPR colocalization in individual, non-fixed, muscle fibres. Tubular DHPR signals alternated with second harmonic generation signals originating from myosin. Dystrophin-DHPR colocalization was substantial in wt fibres, but diminished in most mdx fibres. Mini-dystrophin (MinD) expressing fibres successfully restored colocalization. Interestingly, in some aged mdx fibres, colocalization was similar to wt fibres. Most mdx fibres showed very weak membrane dystrophin staining and were classified 'mdx-like'. Some mdx fibres, however, had strong 'wt-like' dystrophin signals and were identified as 'revertants'. Split mdx fibres were mostly 'mdx-like' and are not generally 'revertants'. Correlations between membrane dystrophin and DHPR colocalization suggest a restored putative link in 'revertants'. Using the two-micro-electrode-voltage clamp technique, Ca2+-current amplitudes (i(max)) showed very similar behaviours: reduced amplitudes in most aged mdx fibres (as seen exclusively in young mdx mice) and a few mdx fibres, most likely 'revertants', with amplitudes similar to wt or MinD fibres. Ca2+ current activation curves were similar in 'wt-like' and 'mdx-like' aged mdx fibres and are not the cause for the differences in current amplitudes. i(max) amplitudes were fully restored in MinD fibres. CONCLUSIONS: We present evidence for a direct/indirect DHPR-dystrophin interaction present in wt, MinD and 'revertant' mdx fibres but absent in remaining mdx fibres. Our imaging technique reliably detects single isolated 'revertant' fibres that could be used for subsequent physiological experiments to study mechanisms and therapy concepts in DMD

    On Mixed-Initative Planning and Control for Autonomous Underwater Vehicles

    Get PDF
    Supervision and control of Autonomous underwater vehicles (AUVs) has traditionally been focused on an operator determining a priori the sequence of waypoints of a single vehicle for a mission. As AUVs become more ubiquitous as a scientific tool, we envision the need for controlling multiple vehicles which would impose less cognitive burden on the operator with a more abstract form of human-in-the-loop control. Such mixed-initiative methods in goal-oriented commanding are new for the oceanographic domain and we describe the motivations and preliminary experiments with multiple vehicles operating simultaneously in the water, using a shore-based automated planner

    T-REX: partitioned inference for AUV mission control

    Full text link

    The iron-binding CyaY and IscX proteins assist the ISC-catalyzed Fe-S biogenesis in Escherichia coli

    No full text
    International audienceIn eukaryotes, frataxin deficiency (FXN) causes severe phenotypes including loss of iron-sulfur (Fe-S) cluster protein activity, accumulation of mitochondrial iron and leads to the neurodegenerative disease Friedreich's ataxia. In contrast, in prokaryotes, deficiency in the FXN homolog, CyaY, was reported not to cause any significant phenotype, questioning both its importance and its actual contribution to Fe-S cluster biogenesis. Because FXN is conserved between eukaryotes and prokaryotes, this surprising discrepancy prompted us to reinvestigate the role of CyaY in Escherichia coli. We report that CyaY (i) potentiates E.coli fitness, (ii) belongs to the ISC pathway catalyzing the maturation of Fe-S cluster-containing proteins and (iii) requires iron-rich conditions for its contribution to be significant. A genetic interaction was discovered between cyaY and iscX, the last gene of the isc operon. Deletion of both genes showed an additive effect on Fe-S cluster protein maturation, which led, among others, to increased resistance to aminoglycosides and increased sensitivity to lambda phage infection. Together, these in vivo results establish the importance of CyaY as a member of the ISC-mediated Fe-S cluster biogenesis pathway in E.coli, like it does in eukaryotes, and validate IscX as a new bona fide Fe-S cluster biogenesis factor

    The iron-binding CyaY and IscX proteins assist the ISC-catalyzed Fe-S biogenesis in Escherichia coli

    No full text
    International audienceIn eukaryotes, frataxin deficiency (FXN) causes severe phenotypes including loss of iron-sulfur (Fe-S) cluster protein activity, accumulation of mitochondrial iron and leads to the neurodegenerative disease Friedreich's ataxia. In contrast, in prokaryotes, deficiency in the FXN homolog, CyaY, was reported not to cause any significant phenotype, questioning both its importance and its actual contribution to Fe-S cluster biogenesis. Because FXN is conserved between eukaryotes and prokaryotes, this surprising discrepancy prompted us to reinvestigate the role of CyaY in Escherichia coli. We report that CyaY (i) potentiates E.coli fitness, (ii) belongs to the ISC pathway catalyzing the maturation of Fe-S cluster-containing proteins and (iii) requires iron-rich conditions for its contribution to be significant. A genetic interaction was discovered between cyaY and iscX, the last gene of the isc operon. Deletion of both genes showed an additive effect on Fe-S cluster protein maturation, which led, among others, to increased resistance to aminoglycosides and increased sensitivity to lambda phage infection. Together, these in vivo results establish the importance of CyaY as a member of the ISC-mediated Fe-S cluster biogenesis pathway in E.coli, like it does in eukaryotes, and validate IscX as a new bona fide Fe-S cluster biogenesis factor
    corecore