
A GOAL-ORIENTED AUTONOMOUS CONTROLLER FOR SPACE EXPLORATION

A. Ceballos1, S. Bensalem2, A. Cesta3, L. de Silva4, S. Fratini3, F. Ingrand4, J. Ocón1, A. Orlandini3, F. Py5,
K. Rajan5, R. Rasconi3, and M. van Winnendael6

1GMV, Isaac Newton 11, P.T.M. Tres Cantos, E-28760 Madrid, Spain, {aceballos,jocon}@gmv.com
2VERIMAG Centre Équation, 2 avenue de Vignate, 38610 GIÈRES, France, saddek.bensalem@imag.fr

3ISTC-CNR, Via San Martino della Battaglia 4, I-00185 Rome, Italy,
{amedeo.cesta,simone.fratini,andrea.orlandini,riccardo.rasconi}@istc.cnr.it

4LAAS-CNRS, 7 avenue du Colonel Roche, 31077 Toulouse Cedex 4, France, {felix,ldesilva}@laas.fr
5Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, U.S.A.,

{fpy,kanna.rajan}@mbari.org
6European Space Research & Technology Centre, Keplerlaan 1, Postbus 299, 2200 AG Noordwijk (The Netherlands),

Michel.van.Winnendael@esa.int

ABSTRACT

The Goal-Oriented Autonomous Controller (GOAC)
is the envisaged result of a multi-institutional effort
within the on-going Autonomous Controller R&D activ-
ity funded by ESA ESTEC. The objective of this effort
is to design, build and test a viable on-board controller
to demonstrate key concepts in fully autonomous opera-
tions for ESA missions. This three-layer architecture is
an integrative effort to bring together four mature tech-
nologies: for a functional layer, a verification and vali-
dation system, a planning engine and a controller frame-
work for planning and execution which uses the sense-
plan-act paradigm for goal oriented autonomy. GOAC
as a result will generate plans in situ, deterministically
dispatch activities for execution, and recover from off-
nominal conditions.

Key words: Goal-oriented autonomy, timeline-based
planning, interleaving planning and execution, correct by
construction modules.

1. INTRODUCTION

Deep space and remote planetary exploration missions
are characterized by severely constrained communication
links, limited in communication window durations and
data transmission rates. Round-trip light time delays and
lack of models of remote planetary environments exacer-
bate the control problem for reliably conducting scientific
and engineering operations. This is not only because fast
reaction is sometimes needed, but also because, without
access to live data, decisions made remotely by human
operators may be based on obsolete information, which
could be inappropriate and even hazardous to the system.
Further, most modern spacecraft have on-board control

loops that can be reliably closed in situ using concepts
well established from the field of autonomous science.

To build such controllers however requires dealing with
planning and execution time uncertainty and the capabil-
ity to reason over metric time and resources; delibera-
tion is intrinsic, but it also requires immediate reactive
response to evolving conditions that a robot has to face.
In order to deal with these challenges, the lowest level of
GOAC is a functional layer that is tightly integrated with
a decisional layer at the highest level, both of which have
a rich history with deployments in complex, real-world
environments. The system’s higher levels of abstraction
deal with long-term mission plans that are deliberative
whereas lower levels of abstraction are increasingly reac-
tive. The functional layer is purely reactive with fast re-
action times necessary for failure recovery and command
dispatching. Additionally a verification and validation
system ensures correctness-by-construction of the func-
tional layer, with respect to properties such as deadlock-
freedom.

The resulting system will be a state-of-the-art, robust,
and verifiable autonomous controller that will provide ad-
justable levels of autonomy. Moreover it will allow per-
sonnel to focus on what they want the robotic platform
to do instead of laboriously working on how to satisfy
science and engineering goals.

2. HISTORICAL PERSPECTIVE

For more than two decades, controllers of robotic systems
have been mainly using three-layer architectures. Each
layer, corresponding to the functional layer, the execu-
tive and the deliberative layer, has a different structure,
responsibility and interface. The LAAS architecture [10]
is an example of such a layered architecture.

The Remote Agent (RA) [14, 17] was the first AI-based
closed-loop autonomous control system to take control of
a spacecraft. The RA consisted of three different compo-
nents: a planner-scheduler, an executive, and a fault de-
tection, isolation and recovery subsystem. RA was rev-
olutionary in demonstrating goal commanding in space,
but the differences in models, syntax and semantics be-
tween components led to some design and implementa-
tion issues. The Intelligent Distributed Execution Archi-
tecture (IDEA) [13] tackled this shortcoming by using a
unified planning and execution framework. IDEA was
designed with interleaved planning and execution with
a collection of controllers within a common framework.
However IDEA, did not enforce a systematic framework
for formally governing these interactions. The Teleo-
Reactive Executive (T-REX) [16, 18] was therefore de-
signed to overcome these restrictions using a collection of
controllers called reactors. The novelty of T-REX is that
it enforces a systematic framework for formally manag-
ing the interactions between these reactors, thus respond-
ing to the underlying view that both the synchronization
of state and dispatching of plan primitives are critical to
ensure a correct behavior of the agent and for making
the approach efficient and scalable in practice. T-REX
is the coordination component of the decisional part of
the GOAC architecture.

Automated planning was first used on-board a spacecraft
in the RA [11], and it was used in a mixed-initiative
system for activity planning such as MAPGEN [4] in
the Mars Exploration Rover mission, the first AI based
system to control a spacecraft on the surface of another
planet. MAPGEN uses EUROPA2 [8], a constraint-based
planner. EUROPA2 uses a domain model, together with
initial conditions and desired goals, to build a temporal
network with relations that must be true at start time. It
propagates the relations forward and applies goal con-
straints to select a set of conditions that should be true
in the future, some of these corresponding to actions to
be undertaken. If a goal cannot be achieved, the planner
can backtrack and search for alternatives, and it can also
discard unachievable goals. The deliberative reactors of
T-REX use EUROPA2 as an embedded planner.

The most advanced planning framework developed in
ESA to date is the Advanced Planning and Scheduling
Initiative (APSI) [6] system, developed by ISTC-CNR.
Built on the lessons learnt from MEXAR2 [5], APSI is a
framework to develop mission planning systems based on
constraint-based temporal planning techniques and pro-
vides the core components and capabilities needed for
modelling and solving a planning problem. APSI was
selected as the framework for building the on-board plan-
ner of GOAC. This requires embedding an APSI-based
planner into a new T-REX deliberative reactor.

The functional layer of the LAAS architecture is based on
the Generator of Modules (GenoM) [7], a mature frame-
work for the development of modules that has been in
use in robots for more than a decade. The advantages of
GenoM are that it provides a framework for the develop-
ment of the functional layer in a modular way, as well

as a set of standard primitives for task communication
and management. Moreover, GenoM offers a clear sepa-
ration between user code (implementing the algorithms)
and generic code (functions and automata ensuring the
proper execution of the user code).

The complexity of systems currently being built creates
many difficulties for system design. These difficulties can
be traced in large part to our inability to predict myriad
outcomes of robotic action and environmental response.
A fundamental idea in systems engineering is that com-
plex systems are built by assembling components, i.e.,
simpler sub-systems. Designers attempt to solve new
problems by reusing, extending and improving past solu-
tions proven to be efficient and robust, which favors com-
ponent reuse. However, system-level integration is chal-
lenging in such circumstance: components are usually
highly heterogeneous, have different characteristics, and
are often developed using different technologies. Other
difficulties stem from current design approaches, which
are often based on expertise and experience of design
teams. The space environment for which GOAC is con-
ceived requires a high reliability and safety of the system
as a whole. Therefore, a central problem is the composi-
tion of heterogeneous components in a way that ensures
their correct inter-operation.

For that purpose, we use the Behavior, Interaction, Prior-
ity (BIP) framework [1], developed at VERIMAG, which
provides a model-based and component-based methodol-
ogy to build heterogeneous systems.

Therefore, the functional layer of GOAC is an evolution,
relying on the formal tool BIP, of the pure GenoM archi-
tecture. A good organization of modules (external API)
and module components (internal API), which are both
provided by GenoM, are a first step in the direction of a
component-based approach for the development of cor-
rect and dependable systems.

3. COMPONENTS OF THE SOLUTION

3.1. Interleaving planning and execution: T-REX

In GOAC, planning and execution are inter-twined. T-
REX [16, 18] is a goal-oriented system, with embed-
ded automated planning and execution, encapsulating
the long-standing notion of a sense-deliberate-act cycle,
where sensing, planning and execution are interleaved.
In order to make embedded planning scalable, the sys-
tem enables the scope of deliberation to be partitioned
functionally and temporally. While T-REX was built for
a specific underwater robotics application, the principles
behind its design are applicable in any domain where
deliberation and execution are intertwined in embedded
robotic applications. This is the case, for instance, in
robotic systems designed for space exploration missions.

T-REX has strong execution semantics and separates syn-
chronization from deliberation. It further allows synchro-

nization to be interleaved with deliberation permitting re-
action times to extend to multiple time steps if necessary.
Moreover, the partitioning structure provided automati-
cally applies rules for synchronization and dispatch to co-
ordinate among control loops and resolve conflicts. Safe
and effective adaptation requires a balanced considera-
tion of mission objectives, environmental conditions and
available resources.

A T-REX agent comprises a set of coordinated concur-
rent control loops. Each control loop is embodied in a
reactor that encapsulates all details of how to accomplish
its control objectives. There is a well-defined messaging
protocol for exchanging facts and goals between reactors:
observations of the current state either from the environ-
ment or from within the platform, and goals to be ac-
complished. Reactors are differentiated based on whether
they need to deliberate in abstraction (at the highest level)
or be responsive to the inputs from the lower levels closer
to the hardware. The former therefore will have larger
look-ahead windows in which to deliberate, while the lat-
ter usually do not; and the former will have larger laten-
cies within which to return a partial-plan for dispatching
to other reactors while the latter will not. Such gradation
allows the entire system to be both deliberative as well as
reactive over its temporal scope.

3.2. Timeline-based planning: APSI

Planning in GOAC relies on a specialized planner based
upon the APSI [6] technology. In particular, being
APSI a software development framework for planning
and scheduling systems, we have built a planner within
such software environment specifically to serve the needs
of GOAC. The planner, generically referred to as GOAC-
APSI-Planner, has functionality very close to the Open
Multi-component Planner and Scheduler (OMPS) [9] and
in particular uses a refinement of its Domain Definition
Language (DDL.3) to describe the relevant constraints of
a planning domain.

The GOAC-APSI-Planner uses a native timeline-based
representation that is shared with T-REX in order to sup-
port a natural integration planner/executor in the deci-
sional layer of GOAC. The natural modeling reference
for all these planning systems is a timeline-based repre-
sentation, which constitutes a domain model as a set of
state variables. A timeline is an evolution of a particular
state variable over time. The domain modeling language
allows to specify the allowed state transitions as well as
the causal and temporal relationships between state vari-
ables in order to describe the physics of the specific de-
vice we are controlling

It is worth reminding that in tineline-based planning there
is no explicit notion of action as used in other planning
systems. A planning problem is presented as a given fu-
ture desired state of the system, and the outcome of the
planning process is the series of state transitions that are
required in order to achieve the desired temporally quali-
fied conditions specified as a planning goal.

Similar to APSI and OMPS, the GOAC-APSI-Planner in-
tegrates the concept of component as a generalization of
state variable, can be configured to model resources, and
uses the concept of decision network as a constraint net-
work of decisions on different components, which the
planner leverages to propagate new decisions and con-
straints that are synthesized during planning—the con-
cept of decision network can be used alternatively with
current plan with the same meaning.

3.3. A framework for the functional layer: GenoM
and BIP

GenoM [7] is a development framework specifically in-
tended for the definition and implementation of modules
that encapsulate algorithms embedded in target machines
such as robotic systems. A module is a standardized soft-
ware entity that is able to offer services which are imple-
mented by a set of algorithms. Users can start or stop
the execution of these services, pass arguments to the al-
gorithms and read the data produced. GenoM provides a
standard interface to interact with the services and data
provided by modules.

Each GenoM module of the functional layer is responsi-
ble for a particular functionality of the robot. For ex-
ample, the basic sensors and effectors are managed by
their own modules (e.g., one module for the camera pair
and one module for the laser range finder). More com-
plex functionalities are encapsulated in higher level mod-
ules (e.g., a module doing stereo correlation will use the
image taken by the camera module). The most complex
functions (such as navigation) can be obtained by having
modules “work” together

The BIP framework [1] provides a methodology for
building real-time systems consisting of heterogeneous
components. BIP is used in order to reduce a posteri-
ori validation as much as possible, by putting the focus
on the following challenging problems:

• incremental composition of heterogeneous compo-
nents;

• ensuring correctness-by-construction for essential
system properties such as mutual exclusion and
deadlock freedom;

• automated support for component integration and
generation of “glue code” meeting given require-
ments.

GenoM along with BIP provides a framework for the de-
velopment of the functional layer of robotic systems, fea-
turing a modular and leveled structure wherein certain
(both intra-module and inter-module) constraints can be
enforced at run-time [3].

Figure 1. GOAC architecture

3.4. The need for verification and validation: D-
Finder

The BIP connectors added to enforce certain properties
could cause deadlocks in the functional layer, since they
amount to adding tighter constraints to subsets of com-
ponents. A deadlock is usually the consequence of over
constraining the interaction between components, so the
solution is to relax certain constraints.

D-Finder [2] is a tool for compositional deadlock de-
tection and verification in component-based systems de-
scribed in the BIP framework, with the final objective of
proving properties such as global deadlock freedom. In
the case of a finite-state system, the BIP methodology
guarantees that all global deadlocks will be found. In the
case of infinite state systems, which is the usual case in
practice, the system to be analyzed is an over approxi-
mation of the real system. In this case, all actual dead-
locks will be found, but some false positives may arise
due to using an over approximation of the system. The
methodology includes means to identify false deadlocks.
We usually follow an incremental verification process:
first we verify atomic components and then we verify the
compound components resulting from their composition.

4. OVERALL SYSTEM ARCHITECTURE

GOAC is a hybrid architecture consisting of a set of reac-
tors and a functional layer. The architecture is illustrated
in Fig. 1. There are several deliberative reactors and a
command-dispatcher reactor. The organization of reac-
tors is not purely hierarchical, but there is a hierarchy of
dependencies among reactors. Each deliberative reactor
uses a planner based on APSI (background box behind
‘Reactor 1’ and ‘Reactor 2’ in Fig. 1). The APSI planner
used in GOAC comes with the added capabilities of dy-
namic re-planning and step-wise deliberation. The front-
end of a deliberative reactor (red front boxes ‘Reactor 1’
and ‘Reactor 2’ in Fig. 1) complies with the messaging
protocol of goals and observations between reactors.

GOAC follows a divide-and-conquer approach to com-
plexity, by splitting the deliberation problem into sub-
problems, thus making it more scalable and efficient. The
number of deliberative reactors to be instantiated in the
on-board controller of a given space robotic system is a
mission-specific design decision. The set of deliberative
reactors represent a partition of the deliberation problem
which is both functional and temporal. Each reactor de-
liberates over a different part of the domain functionally;
for instance, a science reactor and a navigation reactor
take into account different aspects of the mission. On
the other hand, it is a temporal partition in that the plan-
ning horizon is different for each reactor. For instance,
whereas a mission-level reactor could consider the whole
mission life (e.g., a day-long survey), a navigation reac-
tor would look into the future for a single navigation unit,
such as a traverse towards a given target point.

Since the planning problem can be computationally in-
tensive, by splitting it into several sub-problems, we
achieve scales of efficiency. If, for instance, a lower-level
deliberative reactor can cope with a re-planning need,
higher-level reactors will not be informed. In this way,
a subset of the planning domain can be used to efficiently
satisfy a re-planning need.

Planning in GOAC is a model-driven process, in the
sense that it relies on a domain model representing the
world and the robot capabilities. The model comprises
a set of state variables, and describes the allowed transi-
tions as well as a set of synchronization rules. Synchro-
nization rules describe causal and temporal relationships
between state variables. Domain models are written in a
refinement of DDL.3 [9]. Since the planning problem is
split into sub-problems, each deliberative reactor uses its
own instance of the planner. In turn, each planner uses its
own domain model to deliberate over its specific subset of
the overall domain. The models of the reactors partially
overlap each other, which captures the fact that there are
some dependencies across reactors.

Goals follow a top-down flow, from an abstract mission-
level reactor, to more specific reactors, down to the
command-dispatcher reactor, which translate goals into
requests to the functional layer and is the interface to the
functional layer. Observations flow in a bottom-up di-
rection. At the bottom of the hierarchy, the command-
dispatcher reactor synthesizes observations from replies
received from the functional layer, and forwards these to
reactors placed at higher levels of abstraction, which in
turn generate more abstract observations. The interaction
between both realms follows a request-reply pattern. The
command-dispatcher reactor generates requests to be sent
to the functional layer from the goals received from other
reactors, and converts replies from the functional layer
into observations for other reactors.

The functional layer is based on GenoM and BIP. The ba-
sic self-contained design unit in GenoM is a module. Each
module encapsulates a functionality of the robotic sys-
tem. The definition of a module includes a well-specified
interface consisting of services and exported data, called

Figure 2. GenoM/BIP

requests and posters, respectively. The set of modules
comprising the functional layer of a robotic system is
mission specific, especially for modules responsible for
controlling hardware elements. However, like hardware
devices, functional modules are reusable across different
robotic platforms.

The definition of a GenoM module describes the compu-
tational model it needs, and the execution model of its
services, while the BIP model of a module provides a
formal description of the module’s behavior. On top of
the modules BIP models, it is possible to specify inter-
module and intra-module synchronization and causality
constraints. The GenoM/BIP framework favors a devel-
opment focused on the implementation of the codels, the
algorithmic coding units, rather than lower-level details,
such as multi-thread synchronization or data sharing. A
specific tool, the GenoM-to-BIP translator, automatically
generates a BIP model from a GenoM module definition.
The joint GenoM/BIP development process is depicted in
Fig. 2.

In order to access the functional layer modules, the GenoM
framework has a native API in the C language, and pro-
vides bindings for Tcl and for OpenPRS [10]. In GOAC,
the command-dispatcher reactor uses an OpenPRS-based
interface for the interaction with the functional layer.
This interface provides decoupling and a more convenient
level of abstraction to the deliberative and executive lay-
ers.

The main processing function of the controller indefi-
nitely repeats a sense-deliberate-act control cycle. On
every cycle, planners accept goals from higher-level reac-
tors or from an external system such as the ground control
center; deliberative reactors post goals to lower-level re-
actors as a result of its planning activity; observations are
synchronized to guarantee a common view of the world
at the execution frontier; but most computation effort is
reserved for deliberation if needed. In GOAC, time is as-
signed to the different planners as steps of deliberation
or time slots, according to a reactor precedence based on
previous assignments and pending planning work.

Plans in GOAC are flexible: goals can be flexibly exe-
cuted because the start time, the end time and the dura-
tion are time intervals. This way, plans are more robust
in the frame of uncertain environmental conditions, than
predefined, rigid sequence of activities.

In addition to goal-based operations, GOAC supports all
autonomy levels as defined by the ECSS [19], enabling
a complex mission configuration relying on mission-
level (or lower-level) goals, on-board control procedures
(OBCP), event-driven actions, time-tag commands and
tele-operation. GOAC’s flexible design enables a mis-
sion concept wherein autonomy can be dynamically and
incrementally delegated from ground to space.

GOAC is an architecture that defines a template that must
be instantiated for a specific robotic platform. The instan-
tiation encompasses a number of development tasks of a
different nature. It can be outlined in the following steps,
which are a bottom-up description of the process:

• definition of modules of the functional layer and im-
plementation of the codels;

• generation of BIP models of the modules;

• addition of constraints between modules;

• verification of essential system properties such as,
but not limited to, deadlock freedom;

• implementation of the OpenPRS procedures repre-
senting the access to the functional layer and making
available an API to the reactors;

• implementation of the command-dispatcher reactor;
and

• implementation of the domain models for the delib-
erative reactors.

5. CASE STUDIES

In the scope of the Autonomous Controller activity, two
case studies have been selected in order to demonstrate
the capabilities of GOAC. The first case study is based
on a terrestrial rover testbed, and the second is based on a
rover simulator. The selection is the result of a trade-off
between sharing commonalities and efforts across both
studies and showing GOAC in two different scenarios.

5.1. DALA: An exploration rover

The DALA robot is one of the LAAS robotic platforms
that can be used for autonomous exploration type of ex-
periments. DALA is a mature iRobot ATRV robot that
provides a large number of sensors and effectors. It
can use vision based navigation (such as the one used
on Spirit and Opportunity), as well as indoor navigation

Figure 3. Scenario proposed for the DALA robot

based on a Sick laser range finder. DALA is a mature
platform that has been successfully used for several years.

The purpose of the DALA scenario is basically to be-
have as close to a Mars or Lunar rover as possible. To
this effect, the rover has a number of concurrent tasks to
achieve:

1. Navigate safely in an a priori unknown environment.

2. Take high resolution pictures of an operator-given
list of locations (presumably because of some scien-
tific interest).

3. Communicate with some orbiters or a lander during
some given visibility windows.

4. Continuously monitor the environment for “oppor-
tunistic science,” and take appropriate actions when
something interesting is detected.

5. Monitor and control the proper heating of the plat-
form and the payload.

6. Monitor and control the proper power usage and en-
ergy consumption.

A typical scenario involving these different activities
could be as follows. At the beginning of the day, the rover
wakes up and warms up. It has a mission to take high-
resolution pictures (possibly stereo) of three different lo-
cations, which have been chosen by scientists based on

previously acquired data. Moreover, there are two com-
munication “orbiter visibility” windows during this day
when the rover establishes a connection to transmit re-
cently acquired data, and to receive further instructions.
Communication is done while the robot is still to mitigate
power usage. Meanwhile, while navigating to the differ-
ent locations, the rover continuously monitors the envi-
ronment (with a panoramic camera) for possibly interest-
ing scientific features. When such a feature is detected,
the robot takes a picture and pinpoints the location of the
feature to later send this information to the ground (for
review and further investigations in future missions). Fi-
nally, the rover navigates back to its starting point before
the end of the day. All of this is performed while the robot
monitors its energy level as well as its power usage.

The implementation of the GOAC controller for DALA
started at the functional layer. Firstly, GenoM modules
for all devices were incrementally integrated: starting
from basic hardware functions in charge of power and
locomotion, then laser-based indoor navigation and PTU
and cameras, and finally the more complex stereovision-
based outdoor navigation. At a second major stage, the
GenoM modules were migrated to BIP, thus enabling the
definition of inter-module and intra-module constraints to
be incorporated into the controller behavior, as well as the
detection of deadlocks by D-Finder.

The GOAC framework includes tools to incrementally
test components: isolated modules can be tested by in-
dividually examining the services they offer, and all in-
tegrated modules can be tested by means of a Tcl-based
or OpenPRS-based supervisor. At the same time, the de-
liberative/executive layer has been implemented and inte-
grated with the functional layer. Initially, a single deliber-
ative reactor handled only a simple domain model. Open-
PRS procedures were initially used to simulate the func-
tional layer, thus closing the lower loop. After separately
testing the functional layer and the deliberative/executive
layer, they were put together for a system test running a
simplified version of the scenario. A mission-level goal
was injected at system startup which led to the execution
of a simplified experiment like the one described above.

This scenario gives the opportunity to demonstrate
GOAC by using goal commanding and by controlling
real hardware.

5.2. 3DROV: A rover simulator framework

The 3DROV [12, 15] is a design and simulation tool
for planetary exploration rovers, particularly suitable for
rover simulation. It includes models of the planetary en-
vironment; the mechanical, electrical, and thermal sub-
systems of the rover; generic on-board controller, and the
ground control station. Fig. 4 shows a snapshot of the
3DROV visualization tool. The simulation environment
is based on ESA’s SIMSAT 4.0. The models are compli-
ant with SMP 2.0.

In the 3DROV scenario, we use GOAC to control the

Figure 4. 3DROV visualization tool, showing camera
footprints and overlay

rover simulator. The scenario includes a Mars-like terrain
with small craters and cliffs. The overlay functionality of
the 3DROV is used to represent certain areas of potential
geological interest.

The integration of GOAC in the 3DROV involves modi-
fying the 3DROV generic controller. In order to do that,
the 3DROV instance of the GOAC uses a software library
that makes available an interface to the algorithms of the
generic controller.

The SIMSAT environment is based on GNU/Linux
shared libraries for the different pieces to be used in a
simulation. In particular, a specific shared library encap-
sulates the controller. Therefore, the GOAC instance of
the 3DROV must provide a shared library to be loaded
on SIMSAT. In order to do that, a special module of the
functional layer called Algo3drov has been implemented.
This module complies with the GenoM framework so that
in can work together with the rest of the functional layer
and the module uses the 3DROV actions library. Two
separate components address both functions, and they
are inter-connected by means of remote procedure calls
(RPC).

The resulting architecture completely relies on the exist-
ing algorithms of the generic controller of the 3DROV
for low level access to the simulation. Yet, from the point
of view of GenoM/BIP users (T-REX and OpenPRS), it
has the structure of a GenoM/BIP module. Moreover, the
architecture also uses existing GenoM modules for stereo
based navigation (those modules are shared between the
DALA and 3DROV experiments). As a result, it is possi-
ble to specify BIP safety constraints over all these func-
tional modules.

Several scenarios of increasing complexity have been de-
signed for the 3DROV. Successive scenarios are intended
to demonstrate the different GOAC capabilities, such as
re-planning or BIP constraints, dynamic injection of mis-
sion goals and adjustable autonomy levels.

6. CONCLUSIONS

GOAC responds to the needs of space missions in which
higher degrees of on-board autonomy are required.

The model-driven methodology underlying GOAC al-
lows an incremental design and implementation of con-
trollers for space robotic systems, and naturally decou-
ples major system components, which can be imple-
mented by different development teams.

A timeline-based planning approach produces flexible
plans that can cope to a large extent with environmental
activities without the need of frequent re-planning. Plan-
ning is a continuous activity, which, by splitting the plan-
ning domain model into sub-models, can be highly ef-
ficient. The flexibility of timeline-based plans together
with the re-planning capability provides a robust way to
face the uncertainty inherent in space exploration mis-
sions.

A formal description of the modules comprising the func-
tional layer enables the detection and verification of es-
sential system properties such as deadlocks, which even-
tually leads to a correct-by-construction functional layer.

By combining different areas in Artificial Intelligence,
GOAC fosters an operational concept in which operators
can focus on the domain level rather than lower-level as-
pects of the mission. In addition to potentially reducing
the costs of the mission as a consequence of goal-oriented
operations, a high-level of autonomy also inproves the
performance of the robotic platform in two ways:

• scientific performance: high-level guidelines for
nominal as well as opportunistic scientific explo-
ration allows being more efficient in doing science
than relying on pre-calculated plans, potentially re-
sulting in a higher mission return; and

• robustness of the robotic system: when a robotic
system reaches off-nominal situations it can be safer
and more efficient to autonomously react to the en-
vironmental conditions and autonomously re-plan
rather than wait for ground instructions or rely on
fixed pre-programmed alternative plans, potentially
increasing the probability of successfully meeting
the mission’s objectives.

REFERENCES

[1] A. Basu, M. Bozga, J. Sifakis, Modeling Heteroge-
neous Real-time Components in BIP. In 4th IEEE In-
ternational Conference on Software Engineering and
Formal Methods, Washington DC, USA, 2006, IEEE
Computer Society.

[2] S. Bensalem, M. Bozga, J. Sifakis, T.-H. Nguyen.
D-Finder: A Tool for Compositional Deadlock De-
tection and Verification. Computer Aided Verification,

21st International Conference, CAV 2009, Grenoble,
France, June 26 - July 2, 2009. Proceedings. Springer,
Lecture Notes in Computer Science 5643

[3] S. Bensalem, L. de Silva, M. Gallien, F. Ingrand,
R. Yan. “Rock Solid” Software: A Verifiable and
Correct-by-Construction Controller for Rover and
Spacecraft Functional Levels. International Sympo-
sium on Artificial Intelligence, Robotics and Automa-
tion for Space (2010) Sapporo, Japan.

[4] J. Bresina, A. Jonsson, P. Morris, and K. Rajan. Ac-
tivity Planning for the Mars Exploration Rovers. In
ICAPS-05. International Conf. on Automated Plan-
ning and Scheduling, Monterey, California, 2005.

[5] A. Cesta, G. Cortellessa, M. Denis, A. Donati,
S. Fratini, A. Oddi, N. Policella, E. Rabenau and
J. Schulster. MEXAR2: AI Solves Mission Planner
Problems. In IEEE Intelligent Systems, 22(4):12-19,
2007

[6] A. Cesta, G. Cortellessa, S. Fratini, and A. Oddi. De-
veloping an End-to-End Planning Application from a
Timeline Representation Framework. In IAAI-09. Pro-
ceedings of the 21st Innovative Applications of Artifi-
cial Intelligence, 2009

[7] S. Fleury, M. Herrb and R. Chatila. GenoM: A Tool
for the Specification and the Implementation of Op-
erating Modules in a Distributed Robot Architecture.
In International Conference on Intelligent Robots and
Systems, pages 842-848. Grenoble (France), 1997.

[8] J. Frank and A.K. Jónsson, Constraint-based At-
tribute and Interval Planning, In Constraints, 8, 4, 339-
364, 2003.

[9] S. Fratini, F. Pecora, and A. Cesta. Unifying Plan-
ning and Scheduling as Timelines in a Component-
Based Perspective. In Archives of Control Sciences,
18(2):231-271, 2008

[10] F. Ingrand, S. Lacroix, S. Lemai-Chenevier and
F. Py, Decisional Autonomy of Planetary Rovers,
Journal of Field Robotics, Volume 24, Issue 7, Pages
559 - 580, July 2007

[11] A.K. Jónsson, P. Morris, N. Muscettola, K. Rajan
and B. Smith, Planning in Interplanetary Space: The-
ory and Practice, AIPS, Breckenridge, CO, 2000

[12] K. Kapellos and L. Joudrier, 3DROV: A Plane-
tary Rover Design Tool based on SIMSAT v4. In
ESAW2009, ESA/ESOC, Darmstadt, Germany, May
2009

[13] N. Muscettola, G. A. Dorais, C. Fry, R. Levinson,
and C. Plaunt, IDEA: Planning at the core of au-
tonomous reactive agents” in Proc IWPSS, Houston,
2002

[14] N. Muscettola, P. P. Nayak, B. Pell and
B. C. Williams, Remote Agent: To Boldly Go
Where No AI System Has Gone Before, in AIJ, 103,
1998

[15] P. Poulakis, L. Joudrier, S. Wailliez, K. Kapellos :
3DROV : A planetary Rover System Design, Simula-
tion and Verification Tool. 9th International Sympo-

sium on Artificial Intelligence, Robotics and Automa-
tion in Space (iSairas), Hollywood, USA, February
26 - 29, 2008

[16] F. Py, K. Rajan & C. McGann. A Systematic Agent
Framework for Situated Autonomous Systems. 9th Int.
Conf. on Autonomous Agents and Multiagent Systems
(AAMAS), May 2010, Toronto, Canada.

[17] K. Rajan, D. Bernard, G. Dorais, E. Gamble,
B. Kanefsky, J. Kurien, W. Millar, N. Muscettola,
P. Nayak, N. Rouquette, B. Smith, W. Taylor, and
Y. Tung, Remote Agent: An Autonomous Control
System for the New Millennium. In PAIS-00. Proc.
Prestigious Applications of Intelligent Systems, ECAI,
Berlin, Germany, 2000.

[18] K. Rajan, F. Py, C. McGann, J. Ryan, T. O’Reilly,
T. Maughan & B. Roman. Onboard Adaptive Con-
trol of AUVs using Automated Planning and Execu-
tion. Intnl. Symposium on Unmanned Untethered Sub-
mersible Technology (UUST) August 2009. Durham,
NH

[19] ECSS – Space engineering – Space segment oper-
ability, ECSS-E-ST-70-11C, 31/07/2008

