191 research outputs found

    Assessing recycled/secondary materials as pavement bases

    Get PDF
    The use of recycled or secondary materials in pavement construction is gaining popularity owing to the added advantages over conventional materials, which include the conservation of natural resources, conservation of energy, preservation of the environment and reduction in life-cycle costs. In this research, two types of recycled materials, namely reclaimed asphalt pavement and cement-stabilised quarry fines, were utilised as pavement base materials for a highway extension project in Arlington, Texas, USA. Prior to the construction of test sections, a series of laboratory studies including strength, compressibility, swell/shrink and resilient modulus tests were performed on the selected base materials to verify their suitability as base materials for pavement construction. Pavement test sections were instrumented with horizontal inclinometers and pressure cells to monitor the long-term performance of these new base materials. Pavement surface profiling surveys were also conducted at regular intervals to monitor for any accumulated roughness of the pavement surfaces. Analysis of results obtained from both laboratory and field monitoring studies demonstrates that these secondary materials can be effectively used as pavement bases. The sustainability issues of this project are also discussed in detail

    A review of sustainable approaches in transport infrastructure geotechnics

    Get PDF
    Transportation geotechnics associated with constructing and maintaining properly functioning transportation infrastructure is a very resource intensive activity. Large amounts of materials and natural resources are required, consuming proportionately large amounts of energy and fuel. Thus, the implementation of the principles of sustainability is important to reduce energy consumption, carbon footprint, greenhouse gas emissions, and to increase material reuse/recycling, for example. This paper focusses on some issues and activities relevant to sustainable earthwork construction aimed at minimising the use of energy and the production of CO2 while improving the in-situ ground to enable its use as a foundation without the consumption of large amounts of primary aggregate as additional foundation layers. The use of recycled materials is discussed, including steel slag and tyre bales, alongside a conceptual framework for evaluating the utility of applications for recycled materials in transportation infrastructure.This work is financed by FEDER funds through the Competitivity Factors Operational Programme - COMPETE and by national funds through FCT – Foundation for Science and Technology within the scope of the project POCI-01-0145-FEDER-00763

    The function of basal geogrids in minimizing rutting of geocell reinforced subgrades

    Get PDF
    Rutting is a common phenomenon encountered in flexible pavements supported by weak subgrades. Reinforcing the weak subgrades is one of the promising alternatives to alleviate the pavement surface rutting. This paper presents the results of laboratory model tests on a circular plate supported by geocell reinforced sand subgrades. A series of tests were carried out by varying the height of the geocell mattress with an additional layer of basal geogrid placed underneath the geocell mattress. The surface settlements (rutting) were measured through displacement gauges. Strain gauges were placed along the width of the basal geogrid to verify their performance as a base layer. A substantial reduction in surface rutting is observed in the case of geocell reinforced beds with basal geogrids. A seven fold improvement in bearing capacity was obtained with the provision of an additional geogrid layer over unreinforced subgrades. Overall, a basal geogrid layer provides higher structural support mobilized through membrane effect to the geocell reinforced pavement layer

    Repeated Load Tests on Geocell Reinforced Sand Subgrades

    Get PDF
    In this research, results from a series of large scale dynamic model tests on geocell reinforced and unreinforced homogeneous sand beds are presented. The placement density of sand in all the tests was maintained at 70%. The loading was applied through a circular steel plate which replicates the load application from a passenger car. A single axle wheel load of 40 kN was assumed on the pavement surface of which 7 kN was calculated to be applied on the subgrade layer. The influence of the width and height of the geocell reinforcement on the cyclic behavior of the loading system was studied and the performance improvement in terms of traffic benefit ratios and cumulative plastic deformations/rutting was determined. A traffic benefit ratio was observed to be as high as 45 for the case of geocell size h/D=1, b/D=4 at 10% plate settlement. The cumulative permanent deformations were reduced by 8 fold for the same case against the unreinforced case at 5% plate settlement

    Experimental and Numerical Evaluation of Reinforcement Mechanism of Geocells

    Get PDF
    Geocells is a commonly adopted reinforcement element for foundation and pavement applications. It is inferred from the existing literature that the geocell offers an all-round confinement to the infill material in addition to the lateral restraint and bearing support as a reinforcement mechanism. However, quantification of the confinement effect provided by the mattress is a challenge. To quantify and demonstrate the geocell reinforcement mechanism, an extensive experimental and numerical studies were undertaken. In the experimental study, a large test tank was adopted to build test sections with and without geocell reinforced granular bases over weak subgrades. Several earth pressure cells were installed along the interface of the geocell reinforced base and weak subgrade layers, and within the geocell pockets. A monotonic loading was applied to understand the reinforcement behavior of the geocell mattress. In this paper, the actual three dimensional honeycomb shape of the geocells is modeled using Fast Lagrangian Analysis of Continua in 3D (FLAC3D), a finite difference software and the geocell-soil mechanism is studied from the stresses and strains developed within the geocell mattress. The numerical models have predicted the experimental pressure-rut depth responses with about 95% accuracy. The confining stresses developed within the geocell mattress and at the interface were recorded to understand the mechanism of geocell reinforcement. It is observed that the confining stress in the geocell mattress is not uniform throughout the mattress, however, it decreases linearly from the point of loading

    Genome-Wide Linkage Scan for Genes Influencing Plasma Triglyceride Levels in the Veterans Administration Genetic Epidemiology Study

    Get PDF
    OBJECTIVE—Elevated plasma triglyceride concentration is a component of the insulin resistance syndrome and is commonly associated with type 2 diabetes, obesity, and coronary heart disease. The goal of our study was to perform a genome-wide linkage scan to identify genetic regions that influence variation in plasma triglyceride levels in families that are enriched with individuals with type 2 diabetes

    Speciated online PM1 from South Asian combustion sources-Part 1: Fuel-based emission factors and size distributions

    Get PDF
    Combustion of biomass, garbage, and fossil fuels in South Asia has led to poor air quality in the region and has uncertain climate forcing impacts. Online measurements of submicron aerosol (PM1) emissions were conducted as part of the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) to investigate and report emission factors (EFs) and vacuum aerodynamic diameter (dva) size distributions from prevalent but poorly characterized combustion sources. The online aerosol instrumentation included a qmini aerosol mass spectrometer (mAMS) and a dual-spot eight-channel aethalometer (AE33). The mAMS measured non-refractory PM1 mass, composition, and size. The AE33-measured black carbon (BC) mass and estimated light absorption at 370 nm due to organic aerosol or brown carbon. Complementary gas-phase measurements of carbon dioxide (CO2), carbon monoxide (CO), and methane (CH4) were collected using a Picarro Inc. cavity ring-down spectrometer (CRDS) to calculate fuel-based EFs using the carbon mass balance approach. The investigated emission sources include open garbage burning, diesel-powered irrigation pumps, idling motorcycles, traditional cookstoves fueled with dung and wood, agricultural residue fires, and coal-fired brick-making kilns, all of which were tested in the field. Open-garbage-burning emissions, which included mixed refuse and segregated plastics, were found to have some of the largest PM1 EFs (3.77-19.8 g k-1) and the highest variability of the investigated emission sources. Non-refractory organic aerosol (OA) size distributions measured by the mAMS from garbage-burning emissions were observed to have lognormal mode dva values ranging from 145 to 380 nm. Particle-phase hydrogen chloride (HCl) was observed from open garbage burning and was attributed to the burning of chlorinated plastics. Emissions from two diesel-powered irrigation pumps with different operational ages were tested during NAMaSTE. Organic aerosol and BC were the primary components of the emissions and the OA size distributions were centered at ∼ 80 nm dva. The older pump was observed to have significantly larger EFOA than the newer pump (5.18 g k-1 compared to 0.45 g k-1) and similar EFBC. Emissions from two distinct types of coal-fired brick-making kilns were investigated. The less advanced, intermittently fired clamp kiln was observed to have relatively large EFs of inorganic aerosol, including sulfate (0.48 g k-1) and ammonium (0.17 g k-1), compared to the other investigated emission sources. The clamp kiln was also observed to have the largest absorption Ångström exponent (AAE Combining double low line 4) and organic carbon (OC) to BC ratio (OC: BC Combining double low line 52). The continuously fired zigzag kiln was observed to have the largest fraction of sulfate emissions with an EFSO4 of 0.96 g k-1. Non-refractory aerosol size distributions for the brick kilns were centered at ∼ 400 nm dva. The biomass burning samples were all observed to have significant fractions of OA and non-refractory chloride; based on the size distribution results, the chloride was mostly externally mixed from the OA. The dung-fueled traditional cookstoves were observed to emit ammonium, suggesting that the chloride emissions were partially neutralized. In addition to reporting EFs and size distributions, aerosol optical properties and mass ratios of OC to BC were investigated to make comparisons with other NAMaSTE results (i.e., online photoacoustic extinctiometer (PAX) and off-line filter based) and the existing literature. This work provides critical field measurements of aerosol emissions from important yet under-characterized combustion sources common to South Asia and the developing world

    Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources

    Get PDF
    The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) campaign took place in and around the Kathmandu Valley and in the Indo-Gangetic Plain (IGP) of southern Nepal during April 2015. The source characterization phase targeted numerous important but undersampled (and often inefficient) combustion sources that are widespread in the developing world such as cooking with a variety of stoves and solid fuels, brick kilns, open burning of municipal solid waste (a.k.a. trash or garbage burning), crop residue burning, generators, irrigation pumps, and motorcycles. NAMaSTE produced the first, or rare, measurements of aerosol optical properties, aerosol mass, and detailed trace gas chemistry for the emissions from many of the sources. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared (FTIR) spectroscopy, whole-air sampling (WAS), and photoacoustic extinctiometers (PAX; 405 and 870nm) based on field work with a moveable lab sampling authentic sources. The primary aerosol optical properties reported include emission factors (EFs) for scattering and absorption coefficients (EF Bscat, EF Babs, inm2kg-1 fuel burned), single scattering albedos (SSAs), and absorption Ångström exponents (AAEs). From these data we estimate black and brown carbon (BC, BrC) emission factors (gkg-1 fuel burned). The trace gas measurements provide EFs (gkg-1) for CO2, CO, CH4, selected non-methane hydrocarbons up to C10, a large suite of oxygenated organic compounds, NH3, HCN, NOx, SO2, HCl, HF, etc. (up to ∼ 80 gases in all). The emissions varied significantly by source, and light absorption by both BrC and BC was important for many sources. The AAE for dung-fuel cooking fires (4.63±0.68) was significantly higher than for wood-fuel cooking fires (3.01±0.10). Dung-fuel cooking fires also emitted high levels of NH3 (3.00±1.33gkg-1), organic acids (7.66±6.90gkg-1), and HCN (2.01±1.25gkg-1), where the latter could contribute to satellite observations of high levels of HCN in the lower stratosphere above the Asian monsoon. HCN was also emitted in significant quantities by several non-biomass burning sources. BTEX compounds (benzene, toluene, ethylbenzene, xylenes) were major emissions from both dung- (∼4.5gkg-1) and wood-fuel (∼1.5gkg-1) cooking fires, and a simple method to estimate indoor exposure to the many measured important air toxics is described. Biogas emerged as the cleanest cooking technology of approximately a dozen stove-fuel combinations measured. Crop residue burning produced relatively high emissions of oxygenated organic compounds (∼12gkg-1) and SO2 (2.54±1.09gkg-1). Two brick kilns co-firing different amounts of biomass with coal as the primary fuel produced contrasting results. A zigzag kiln burning mostly coal at high efficiency produced larger amounts of BC, HF, HCl, and NOx, with the halogenated emissions likely coming from the clay. The clamp kiln (with relatively more biomass fuel) produced much greater quantities of most individual organic gases, about twice as much BrC, and significantly more known and likely organic aerosol precursors. Both kilns were significant SO2 sources with their emission factors averaging 12.8±0.2gkg-1. Mixed-garbage burning produced significantly more BC (3.3±3.88gkg-1) and BTEX (∼4.5gkg-1) emissions than in previous measurements. For all fossil fuel sources, diesel burned more efficiently than gasoline but produced larger NOx and aerosol emission factors. Among the least efficient sources sampled were gasoline-fueled motorcycles during start-up and idling for which the CO EF was on the order of ∼700gkg-1 - or about 10 times that of a typical biomass fire. Minor motorcycle servicing led to minimal if any reduction in gaseous pollutants but reduced particulate emissions, as detailed in a companion paper (Jayarathne et al., 2016). A small gasoline-powered generator and an insect repellent fire were also among the sources with the highest emission factors for pollutants. These measurements begin to address the critical data gap for these important, undersampled sources, but due to their diversity and abundance, more work is needed

    Ambient air quality in the Kathmandu Valley, Nepal, during the pre-monsoon: Concentrations and sources of particulate matter and trace gases

    Get PDF
    The Kathmandu Valley in Nepal is a bowl-shaped urban basin that experiences severe air pollution that poses health risks to its 3.5 million inhabitants. As part of the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE), ambient air quality in the Kathmandu Valley was investigated from 11 to 24 April 2015, during the premonsoon season. Ambient concentrations of fine and coarse particulate matter (PM2:5 and PM10, respectively), online PM1, inorganic trace gases (NH3, HNO3, SO2, and HCl), and carbon-containing gases (CO2, CO, CH4, and 93 nonmethane volatile organic compounds; NMVOCs) were quantified at a semi-urban location near the center of the valley. Concentrations and ratios of NMVOC indicated origins primarily from poorly maintained vehicle emissions, biomass burning, and solvent/gasoline evaporation. During those 2 weeks, daily average PM2:5 concentrations ranged from 30 to 207 μ g m-3, which exceeded the World Health Organization 24 h guideline by factors of 1.2 to 8.3. On average, the nonwater mass of PM2:5 was composed of organic matter (48 %), elemental carbon (13 %), sulfate (16 %), nitrate (4 %), ammonium (9 %), chloride (2 %), calcium (1 %), magnesium (0.05 %), and potassium (1 %). Large diurnal variability in temperature and relative humidity drove corresponding variability in aerosol liquid water content, the gas-aerosol phase partitioning of NH3, HNO3, and HCl, and aerosol solution pH. The observed levels of gas-phase halogens suggest that multiphase halogen-radical chemistry involving both Cl and Br impacted regional air quality. To gain insight into the origins of organic carbon (OC), molecular markers for primary and secondary sources were quantified. Levoglucosan (averaging 1230±1154 ng m-3), 1,3,5-triphenylbenzene (0:8± 0:6 ng m-3), cholesterol (2:9±6:6 ng m-3), stigmastanol (1.0 ±0:8 ng m-3), and cis-pinonic acid (4:5 ± 1:9 ng m-3) indicate contributions from biomass burning, garbage burning, food cooking, cow dung burning, and monoterpene secondary organic aerosol, respectively. Drawing on source profiles developed in NAMaSTE, chemical mass balance (CMB) source apportionment modeling was used to estimate contributions to OC from major primary sources including garbage burning (18 ± 5 %), biomass burning (17 ± 10 %) inclusive of open burning and biomass-fueled cooking stoves, and internal-combustion (gasoline and diesel) engines (18±9 %). Model sensitivity tests with newly developed source profiles indicated contributions from biomass burning within a factor of 2 of previous estimates but greater contributions from garbage burning (up to three times), indicating large potential impacts of garbage burning on regional air quality and the need for further evaluation of this source. Contributions of secondary organic carbon (SOC) to PM2:5 OC included those originating from anthropogenic precursors such as naphthalene (10 ± 4 %) and methylnaphthalene (0:3 ± 0:1 %) and biogenic precursors for monoterpenes (0:13 ± 0:07 %) and sesquiterpenes (5 ± 2 %). An average of 25 % of the PM2.5 OC was unapportioned, indicating the presence of additional sources (e.g., evaporative and/or industrial emissions such as brick kilns, food cooking, and other types of SOC) and/or underestimation of the contributions from the identified source types. The source apportionment results indicate that anthropogenic combustion sources (including biomass burning, garbage burning, and fossil fuel combustion) were the greatest contributors to PM2:5 and, as such, should be considered primary targets for controlling ambient PM pollution

    Accelerated swell testing of artificial sulfate bearing lime stabilised cohesive soils

    Get PDF
    This paper reports on the physico-chemical response of two lime stabilised sulfate bearing artificial soils subject to the European Accelerated Volumetric Swell Test (EN13286-49). At various intervals during the test, a specimen was removed and subject to compositional and microstructural analysis. Ettringite was formed by both soils types, but with significant differences in crystal morphology. Ettringite crystals formed from kaolin based soils were very small, colloidal in size and tended to form on the surface of other particles. Conversely, those formed from montmorillonite were relatively large and typically formed away from the surface in the pore solution. It was concluded that the mechanism by which ettringite forms is determined by the hydroxide ion concentration in the pore solution and the fundamental structure of the bulk clay. In the kaolin soil, ettringite forms by a topochemical mechanism and expands by crystal swelling. In the montmorillonite soil, it forms by a through-solution mechanism and crystal growth
    corecore