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Abstract. The Nepal Ambient Monitoring and Source Test-
ing Experiment (NAMaSTE) campaign took place in and
around the Kathmandu Valley and in the Indo-Gangetic Plain
(IGP) of southern Nepal during April 2015. The source char-
acterization phase targeted numerous important but under-
sampled (and often inefficient) combustion sources that are
widespread in the developing world such as cooking with a
variety of stoves and solid fuels, brick kilns, open burning
of municipal solid waste (a.k.a. trash or garbage burning),
crop residue burning, generators, irrigation pumps, and mo-
torcycles. NAMaSTE produced the first, or rare, measure-
ments of aerosol optical properties, aerosol mass, and de-
tailed trace gas chemistry for the emissions from many of
the sources. This paper reports the trace gas and aerosol
measurements obtained by Fourier transform infrared (FTIR)
spectroscopy, whole-air sampling (WAS), and photoacoustic
extinctiometers (PAX; 405 and 870 nm) based on field work
with a moveable lab sampling authentic sources. The primary
aerosol optical properties reported include emission factors
(EFs) for scattering and absorption coefficients (EF Bscat,

EF Babs, in m2 kg−1 fuel burned), single scattering albedos
(SSAs), and absorption Ångström exponents (AAEs). From
these data we estimate black and brown carbon (BC, BrC)
emission factors (g kg−1 fuel burned). The trace gas mea-
surements provide EFs (g kg−1) for CO2, CO, CH4, selected
non-methane hydrocarbons up to C10, a large suite of oxy-
genated organic compounds, NH3, HCN, NOx , SO2, HCl,
HF, etc. (up to ∼ 80 gases in all).

The emissions varied significantly by source, and light
absorption by both BrC and BC was important for
many sources. The AAE for dung-fuel cooking fires
(4.63± 0.68) was significantly higher than for wood-fuel
cooking fires (3.01± 0.10). Dung-fuel cooking fires also
emitted high levels of NH3 (3.00± 1.33 g kg−1), organic
acids (7.66± 6.90 g kg−1), and HCN (2.01± 1.25 g kg−1),
where the latter could contribute to satellite observations
of high levels of HCN in the lower stratosphere above the
Asian monsoon. HCN was also emitted in significant quan-
tities by several non-biomass burning sources. BTEX com-
pounds (benzene, toluene, ethylbenzene, xylenes) were ma-
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jor emissions from both dung- (∼ 4.5 g kg−1) and wood-fuel
(∼ 1.5 g kg−1) cooking fires, and a simple method to estimate
indoor exposure to the many measured important air toxics
is described. Biogas emerged as the cleanest cooking tech-
nology of approximately a dozen stove–fuel combinations
measured. Crop residue burning produced relatively high
emissions of oxygenated organic compounds (∼ 12 g kg−1)
and SO2 (2.54± 1.09 g kg−1). Two brick kilns co-firing dif-
ferent amounts of biomass with coal as the primary fuel
produced contrasting results. A zigzag kiln burning mostly
coal at high efficiency produced larger amounts of BC, HF,
HCl, and NOx , with the halogenated emissions likely com-
ing from the clay. The clamp kiln (with relatively more
biomass fuel) produced much greater quantities of most in-
dividual organic gases, about twice as much BrC, and sig-
nificantly more known and likely organic aerosol precursors.
Both kilns were significant SO2 sources with their emission
factors averaging 12.8± 0.2 g kg−1. Mixed-garbage burn-
ing produced significantly more BC (3.3± 3.88 g kg−1) and
BTEX (∼ 4.5 g kg−1) emissions than in previous measure-
ments. For all fossil fuel sources, diesel burned more effi-
ciently than gasoline but produced larger NOx and aerosol
emission factors. Among the least efficient sources sampled
were gasoline-fueled motorcycles during start-up and idling
for which the CO EF was on the order of ∼ 700 g kg−1 – or
about 10 times that of a typical biomass fire. Minor motor-
cycle servicing led to minimal if any reduction in gaseous
pollutants but reduced particulate emissions, as detailed in a
companion paper (Jayarathne et al., 2016). A small gasoline-
powered generator and an “insect repellent fire” were also
among the sources with the highest emission factors for pol-
lutants. These measurements begin to address the critical
data gap for these important, undersampled sources, but due
to their diversity and abundance, more work is needed.

1 Introduction

Several major atmospheric sources such as temperate for-
est biogenic emissions (e.g., Ortega et al., 2014), developed-
world pollution from fossil fuel use (e.g., Ryerson et al.,
2013), and laboratory-simulated biomass burning (BB) (e.g.,
Stockwell et al., 2014) have been sampled extensively with a
wide range of instrumentation; but many important emission
sources remain unsampled, or rarely sampled, by reasonably
comprehensive efforts (Akagi et al., 2011). As the emissions
of greenhouse gases and other air pollutants from develop-
ing countries have grown in importance for air quality and
regional–global climate studies, the need for a more detailed
understanding of these emissions has increased. For exam-
ple, the diverse and loosely regulated combustion sources of
South Asia are poorly characterized and greatly undersam-
pled relative to their proportion of global emissions (Akagi et
al., 2011). These sources include industrial and domestic bio-

fuel use (e.g., cooking fires), brick kilns, poorly maintained
vehicles, open burning of garbage and crop residue, diesel
and gasoline generators, and irrigation pumps.

Approximately 2.8 billion people worldwide burn solid fu-
els (e.g., wood, dung, charcoal, coal) for domestic (house-
hold) cooking and heating (Smith et al., 2013) with the
largest share in Asia. Cooking fires are the largest source of
soot in South Asia (Ramanathan and Carmichael, 2008). In-
dustrial solid fuel use (e.g., brick kilns) is ubiquitous but dif-
ficult to quantify in the developing world as it is not highly
regulated or adequately inventoried and can involve a vari-
ety of fuels (e.g., coal, sawdust, wood, garbage, tires, crop
residue) (Christian et al., 2010). Along with industrial and
domestic solid fuel use, open burning of agricultural waste
and garbage, gasoline and diesel-powered generators, and
many examples of high-emitting vehicles are prevalent but
grossly undersampled in the developing world with previous
field emissions characterization usually limited to a few trace
gases and a few particulate species such as black carbon (BC)
mass (Bertschi et al., 2003; Christian et al., 2010; Akagi et
al., 2011; Bond et al., 2013).

Understanding the local to global impacts of these sources
is vital to modeling atmospheric chemistry, climate, and, no-
tably, air quality as these sources most commonly occur in-
doors or near or within population centers. Aerosols directly
affect climate through both absorption and the scattering of
solar radiation and indirectly affect climate by modifying
clouds (Bond and Bergstrom, 2006). Therefore, global mod-
eling of radiative forcing requires (among other things) ac-
curate information on the amount and optical properties of
aerosol emissions (Reid et al., 2005). BB is a major source of
BC in the atmosphere, but it also dominates the global emis-
sions of weakly absorbing organic aerosol known as brown
carbon (BrC). BrC has a contribution to the total absorp-
tion of BB aerosol that is poorly constrained but critical to
determining whether the net forcing of BB aerosol is posi-
tive or negative (Feng et al., 2013; Chen and Bond, 2010).
Open burning of biomass and household-level consumption
of biofuel account for a majority of BC emissions in impor-
tant regions including Asia, but data are limited about how
much BrC is emitted from biofuel and biomass combustion
(Kirchstetter et al., 2004; Chen and Bond, 2010; Hecobian
et al., 2010; Arola et al., 2011). In general, there is signifi-
cant uncertainty in emissions inventories since BrC is rarely
tabulated as a separate species though the scattering and ab-
sorption of both BC and BrC are necessary to model radiative
transfer (Clarke et al., 1987).

Additionally, the secondary formation of organic aerosol
and ozone as well as the evolution of the BC and BrC opti-
cal properties are strongly influenced by the co-emitted gases
and particles via processes such as coagulation, evaporation,
oxidation, and condensation (Alvarado et al., 2015; May et
al., 2015). Near-source measurements of light absorption and
scattering by BC and BrC and their emission factors (EFs),
along with the suite of co-emitted gas-phase precursors, are
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needed to better estimate the impacts of these undersampled
sources on climate, chemistry, and local–global air quality,
especially in regions that lack comprehensive sampling.

Current reviews of global BC emissions note that global
models likely underestimate BC absorption in several impor-
tant regions including South Asia (Bond et al., 2013), making
this an important area where undersampled emission sources
have critical climate and chemistry impacts. BC emissions
from South Asia may negatively impact important regional
water resources (Menon et al., 2010) and contribute signifi-
cantly to the warming of the Arctic (Allen et al., 2012; Sand
et al., 2013), and emissions of volatile organic compounds
(VOCs) and nitrogen oxides (NOx) in this region were es-
timated to influence global warming more significantly than
similar emissions from other Northern Hemisphere regions
(Collins et al., 2013). Thus, these sources contribute signifi-
cantly to the local–global burden of primary aerosol, green-
house gases, and reactive trace gases. Crudely estimating
their activity and the composition of their emissions can lead
to significant errors and uncertainties in regional and global
atmospheric models (Dickerson et al., 2002; Venkataraman
et al., 2005; Adhikary et al., 2007, 2010; Akagi et al., 2011;
Bond et al., 2013; Wiedinmyer et al., 2014).

The Nepal Air Monitoring and Source Testing Experi-
ment (NAMaSTE) was a collaborative effort with multi-
ple goals: (1) providing detailed chemistry, physical prop-
erties, and EFs for the trace gases and aerosols produced by
many undersampled BB sources, a poorly maintained trans-
port sector, brick kilns, etc.; (2) using these new emissions
data to expand and update emissions inventories including
the Nepal national inventory; (3) supporting a source appor-
tionment for Kathmandu, Nepal; (4) enhancing regional air
quality and climate modeling; and (5) informing mitigation
strategies. The project involved the International Centre for
Integrated Mountain Development (ICIMOD, the in-country
lead), MinErgy (a local contractor to ICIMOD), the Institute
for Advanced Sustainability Studies (IASS, fixed-site sup-
port), and the universities of Drexel, Emory, Iowa (UI), Cal-
ifornia, Irvine (UCI), Montana (UM), and Virginia (UVA) in
the US.

NAMaSTE employed two strategies simultaneously in the
first measurement phase. A temporary supersite was set up
at a representative suburban Kathmandu location (Bode) to
augment the ongoing monitoring that was initiated there in
2012 (Chen et al., 2015; Lüthi et al., 2015; Putero et al.,
2015; Sarkar et al., 2016) and to provide a target receptor for
the source apportionment. Simultaneously, a well-equipped
mobile team investigated numerous undersampled emissions
sources in and around the Kathmandu Valley and in the ru-
ral Tarai region in the Indo-Gangetic Plain (IGP) of southern
Nepal. The sources represented authentic, common practices
but were usually not random and were arranged by the Min-
Ergy and ICIMOD team before the campaign. The source
and fixed-site measurements commenced on 11 April of 2015
but were cut short by the Gorkha earthquake on 25 April.

The early termination prevented the sampling of on-road mo-
bile sources including heavy-duty diesel trucks, which is now
planned for phase two. Additional measurements of cooking
fires and other sources planned in the Makwanpur District
in the foothills south of Kathmandu were also canceled, but
many valuable data on similar sources had already been gath-
ered. In this paper we present a brief summary of the source
sampling campaign and the details of the trace gas measure-
ments of fresh emissions obtained by Fourier transform in-
frared (FTIR) spectroscopy and whole-air sampling (WAS).
We also present photoacoustic extinctiometer (PAX) data co-
collected at 405 and 870 nm to measure the optical properties
and estimate the mass of the fresh BC and BrC emissions.
Substantial additional source characterization data based on
sampling with Teflon and quartz filters and a suite of other
real-time aerosol instruments will be presented separately
(Jayarathne et al., 2016; Goetz et al., 2016). Several weeks
of high-quality filter, WAS, aerosol mass spectrometer, and
other real-time data from the supersite at Bode will also be
presented and discussed separately. Taken together, the NA-
MaSTE efforts begin to reduce the information gap for these
important undersampled sources.

2 Experimental details

2.1 Source types and site descriptions

Nepal has variable terrain ranging from high mountains to
the low-elevation plains in the Tarai. Our team was based out
of the major population center of Kathmandu and we trav-
eled by truck to various locations in and around the Kath-
mandu Valley while also traveling south to the Tarai re-
gion. The Tarai sits on the southern edge of Nepal in the
IGP with intensive agriculture, terrain, and other similari-
ties to the heavily populated region of northern India. The
emissions data we present were obtained from many sources
including two-wheeled vehicles (motorcycles and scooters),
diesel- and gasoline-powered generators, agricultural pumps,
garbage fires, cooking fires, crop residue burning, and brick
kilns. This section briefly summarizes the significance of
each source and how they were sampled in our study.

2.1.1 Motorcycles and scooters

Mobile emissions are extremely important in urban areas as
they contribute significantly to the degradation of air quality
on local to regional scales (Molina and Molina, 2002, 2004;
Molina et al., 2007; Dunmore et al., 2015). In the Kathmandu
Valley, approximately 80 % of registered vehicles are motor-
cycles or scooters and this is the fastest growing portion of
the transport sector in Kathmandu and nationally (MOPIT,
2014). Motorcycles are generally larger with larger engines
than scooters and in Nepal both now burn unleaded Euro-
3 gasoline. Together, nationally, these two-wheeled vehicles
consume about one third of the gasoline and ∼ 10 % of to-
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tal fuel used for on-road transport (WECS, 2014), with to-
tal sales of diesel and gasoline approaching 1 Tg in 2015
(Nepal Oil Corporation Limited, 2015). Vehicle EFs are com-
monly obtained from bulk exhaust measurements (USEPA,
2015) and the International Vehicle Emissions (IVEs) model
specifically generates EF for mobile sources in the devel-
oping world (Shrestha et al., 2013). However, the detailed
source chemistry (e.g., specific air toxics) is poorly known,
especially for the developing world, as most studies focus
only on CO, NOx , PM2.5, and a few hydrocarbons or total
VOC in developed countries (e.g., Zhang et al., 1993; Pang
et al., 2014).

There are a number of approaches to measure vehicular
emissions that include in-use sampling while driving as well
as more controlled dynamometer studies (Yanowitz et al.,
1999; Pelkmans and Debal, 2006). Franco et al. (2013) out-
line the advantages and drawbacks to these various sampling
techniques, though we will not discuss them further here.
We were able to measure the emissions exhaust of five mo-
torcycles and one scooter during start-up and idling, which
are considered common traffic situations in the Kathmandu
Valley. On 13 April 2015, we set up the NAMaSTE emis-
sions measuring equipment next to a motorcycle repair shop,
and to limit sampling bias, we deliberately tested every mo-
torcycle or scooter that entered the shop for servicing that
day. Each motorcycle and scooter was sampled (start-up and
idling) pre- and post-servicing (one motorcycle was not sam-
pled post-service). The motorcycle or scooter brand, model,
etc., are shown in Table S1. The maintenance routine in-
cluded an oil change, cleaning the air filters and spark plugs,
and adjusting the carburetor.

2.1.2 Generators

Nepal has no significant fossil fuel resources and insuf-
ficient hydropower. As a result, load shedding for many
hours per day is common nationally and diesel- or gasoline-
powered generators (a.k.a. gensets) are critical infrastruc-
ture for industrial, commercial, institutional, and household
use, consuming about 57 000 Mg of fuel per year (World
Bank, 2014). Based on fuel use, the emissions from gener-
ators could be about 6 % of those from the transport sec-
tor. A large variety of generators are deployed to meet var-
ious size, power, and load capacity needs. In this study we
sampled exhaust emissions from one small diesel genera-
tor with 5 kVA capacity (Chanqta, CED6500s) and a much
larger diesel generator, located on the ICIMOD campus, with
100 kVA capacity running at 1518 rpm (85 % of full load).
In addition to the two diesel generators, we sampled the ex-
haust emissions from one gasoline-fueled generator (Yeeda,
Y-113(1133106)) that had a similar capacity (4 kVA) to the
smaller diesel generator. Most pollutants from these engines
are emitted through the exhaust, though some fraction likely
escapes from fuel evaporation.

2.1.3 Agricultural water pumps

The use of diesel-powered agricultural pumps to extract
groundwater for irrigation is rapidly rising in rural regions
of Nepal and India with few to no operational regula-
tions (Barker and Molle, 2004). The dependence on diesel-
operated pumps is likely to rise in South Asia as crop pro-
duction rises with population demands. Although massive
groundwater extraction has aided agricultural productivity
in the region, the environmental impacts are seldom inves-
tigated (Shah et al., 2000). The pumps are estimated to con-
sume∼ 1.3 Tg yr−1 of diesel fuel, over the entire IGP. Diesel-
powered engine emissions can cause adverse health effects
and unfavorable impacts on air quality, climate, crops, and
soils (Lloyd and Cackette, 2001). We sampled the exhaust
from two smaller diesel pumps (Kirloskar, 4.6 kVA, and
Field Marshall R170a, 5 kVA) in the Tarai. We also sampled
the exhaust opportunistically from a much larger irrigation
pump (Shineray) in suburban Kathmandu. We were unable
to confirm fuel type but suspect it was gasoline based on the
emissions chemistry.

2.1.4 Garbage burning

Open burning of garbage is poorly characterized even in the
most “developed” countries where it occurs with minimal
oversight mostly in rural areas (USEPA, 2006). In develop-
ing countries open burning of garbage is much more preva-
lent, poorly characterized, and much less regulated if at all.
In Nepal, as throughout the developing world, open burning
of garbage is ubiquitous on a range of scales. Small, meter-
scale piles of burning trash are seen along roads and in un-
cultivated fields. Approximately 10–20 times larger areas of
burning trash are also common at landfills, along roadsides
and riverbanks, and basically many accessible, uncultivated
open spaces, with these areas evidently serving as an infor-
mal public resource. Given the large amount of refuse gener-
ated and the lack of economically viable alternatives to burn-
ing (Pokhrel and Viraraghavan, 2005), garbage burning is
estimated to consume about 644 000 Mg of municipal solid
waste (MSW) annually in Nepal (Wiedinmyer et al., 2014)
and have a major impact on air quality, health, and atmo-
spheric chemistry. The few available previous measurements
of garbage burning suggest it is particularly important as a
source of BC, hydrogen chloride, particulate chloride, sev-
eral ozone precursors, and air toxics such as dioxins (Cost-
ner, 2005; Christian et al., 2010; Li et al., 2012; Lei et al.,
2013; Wiedinmyer et al., 2014; Stockwell et al., 2014, 2015).
To our knowledge only one study reports reasonably com-
prehensive EFs for authentic open burning of garbage in the
developing world, namely the landfill fire sampling in Mex-
ico of Christian et al. (2010). Several lab studies have mea-
sured the emissions from garbage burning under controlled
conditions in great chemical detail (Yokelson et al., 2013;
Stockwell et al., 2014, 2015), but the relevance of these lab
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experiments needs further evaluation against a better picture
of real-world garbage burning. More real-world data are also
needed to evaluate and update the garbage burning global in-
ventory mentioned above (Wiedinmyer et al., 2014).

During NAMaSTE, we were able to contribute a modest
but important expansion of the real-world garbage burning
sampling. We sampled mixed-garbage burning on six occa-
sions, and we conducted three experiments burning segre-
gated trash since some processing of garbage before com-
bustion is common. The segregated trash experiments iso-
lated plastics and foil-lined bags in separate individual burns.
The components in each garbage burn are summarized in
Table S2 in the Supplement. The overall carbon fraction
for mixed waste was calculated in Stockwell et al. (2014)
by estimating the carbon content of each component in the
mixture, and the value of overall carbon content calculated
therein is assumed in our mixed-garbage EF calculations
(0.50). Polyethylene terephthalate (PET) is the most common
plastic used in metallized packaging, as is the case for chip
and other foil-lined bags, and has a carbon fraction of 0.63
(USEPA, 2010). Most plastic bags are composed of high- and
low-density polyethylene (HDPE, LDPE) mixed with PET,
and thus we estimate a carbon content of 0.745 in this study
(USEPA, 2010).

2.1.5 Cooking stoves

Most global estimates of domestic biofuel consumption
(∼ 3000 Tg yr−1) designate domestic biofuel burning as the
second-largest BB source behind savanna fires (Akagi et al.,
2011). In the developing world, it is estimated that the ma-
jority of biomass fuel is burned in Asia (∼ 66 %; Yevich
and Logan, 2003). The solid fuels regularly burned include
wood-derived fuels (e.g., hardwood, twigs, sawdust, char-
coal) and agricultural residues (e.g., crop waste, livestock
dung) though the fuel choice depends on availability, local
customs, and the season. Yevich and Logan (2003) estimate
residential wood-fuel use for Nepal in 1985 as 9.8 Tg yr−1.
They do not estimate dung-fuel use in Nepal, but the data
they provide for Indian states with populations similar to
Nepal suggests that about 1–2 Tg yr−1 of dung is combusted
residentially in Nepal.

The cooking-fire measurements in this study were con-
ducted in two phases. First, measurements were conducted
by simulating field cooking in a laboratory to capture emis-
sions from a wide range of stove and fuel types. Fuels for the
lab tests included wood, dung, mixed wood and dung, biobri-
quettes, and biogas. Stove types included traditional single-
pot mud stove, open three-stone, bhuse chulo (insulated ver-
tical combustion chamber), rocket stove, chimney stove, and
forced draft stove. In the second phase, cooking emissions
were sampled from authentic cooking fires in the kitchens
of several rural Nepali homes and one restaurant operated
out of a personal kitchen. The two kitchens that utilized the
traditional one-pot clay stove were separated from the main

dwelling by a mud wall. The ventilation for all cases was by
passive draft through the door, open windows, and gaps be-
tween the walls and roof. Smoke samples were taken from
the upper corner of the kitchen where the inflow and out-
flow of emissions were somewhat balanced and we were able
to grab representative samples of accumulated emissions not
needing weighting by the fire-driven flow. Several biofuels
are available to the home and restaurant owners including
twigs and larger pieces of hardwood (Shorea robusta and
Melia azedarach (Bakaino)) and dung shaped into logs or
cakes sometimes containing minor amounts of straw. Differ-
ent fuels or a combination of fuels were consumed depending
on cooking preference. Our study was designed to bring more
comprehensive trace gas and aerosol field sampling to the
effort to understand cooking fires. We note that the women
tending to the cookstoves went in and out of the kitchens
with their children during food preparation, so exposure is
also a concern. While our concentration data could be used
directly for indoor exposure estimates, a better approach for
estimating exposure to the air toxics we report is via our ra-
tios to commonly measured species in the available studies
more focused on representative exposure.

2.1.6 Crop residue

Crop residue burning is ubiquitous during the dry season
in the Kathmandu Valley and rural Nepal. Globally, burn-
ing crop residue post-harvest is widely practiced to enable
faster crop rotation; reduce weeds, disease, and pests; and
return nutrients to the soil. Alternatives to crop residue burn-
ing such as plowing residue into the soil or use as livestock
feed have drawbacks including increased risk of wind ero-
sion of topsoil and poor “feed” nutritional quality (Owen and
Jayasuriya, 1989). Thus, open burning of crop residue is a
prevalent activity in both developing and developed coun-
tries and it has important atmospheric impacts, but the emis-
sions are not well characterized (Yevich and Logan, 2003;
Streets et al., 2013; Sinha et al., 2014). Data for Indian states
with a similar population to Nepal suggest that total annual
crop residue burning in Nepal is on the order of 6–7 Tg yr−1

(Yevich and Logan, 2003).
The land use in southern Nepal is representative of the

much larger Indo-Gangetic Plain, which are inhabited by
nearly a billion people. Crop residue types may impact emis-
sions significantly; thus, mostly in the Tarai, we character-
ized emissions from two regionally important crop types sep-
arately: rice straw and wheat. Additionally, we sampled the
emissions from the burning of other crop residue types im-
portant in this region including mustard residue, grass, and a
mixture of these residues. The carbon fractions assumed in
this study were taken from previous analyses of similar fuels
compiled in Table 1 of Stockwell et al. (2014).
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2.1.7 Brick kilns

Brick production is an important industry in South Asia
and the number of brick kilns in Nepal and India combined
likely exceeds 100 000 (Maithel et al., 2012) with perhaps
∼ 1000 kilns in Nepal that would likely require ∼ 1–2 Tg
of fuel per year. However, the industry is neither unambigu-
ously inventoried nor strongly regulated. The previous trace
gas and particulate emissions data available on brick kilns
are very limited (Christian et al., 2010; Weyant et al., 2014).
We were not able to sample a large number of kilns in Nepal,
but we were able to greatly expand the number of important
trace gas and aerosol species and properties quantified.

During NAMaSTE, we sampled two brick kilns just out-
side the Kathmandu Valley that employed different common
and regionally important technologies. The first kiln sam-
pled was a zigzag kiln, which is considered relatively ad-
vanced due to an airflow system that efficiently transfers heat
to multiple brick chambers. We note that most zigzag kilns
in the Kathmandu Valley have a chimney upwards of 18 m
high to minimize impacts on immediate neighbors. The tall
stacks have been sampled from a port on the side, which
is useful but raises uncertainties due to possible condensa-
tion after sampling hot and moist exhaust or losses on stack
walls past the sampling point. Therefore, we elected to sam-
ple the zigzag emissions from a kiln outside the valley with a
shorter chimney and where our inlet could be within several
meters of the chimney where emissions had cooled to near-
ambient temperature. This approach was followed to reliably
sample the “real” emissions. The zigzag chimney emissions
were sampled for 5 h (09:00–14:00), which captured several
firing–feeding cycles lasting about 1 h each. By cycles we re-
fer to the periodic addition of a primarily coal–bagasse mix
during the day through multiple feeding orifices (a.k.a. stoke
holes) above the firing chamber that were moved as the fir-
ing progressed. We also occasionally diverted the sampling
to capture the emissions from these stoke holes. The smoke
emitted from both the chimney and stoke holes mostly ap-
peared white with occasional puffs of brown smoke when
coal was added through the stoke holes.

The second kiln was a common batch-type clamp kiln. In
clamp kilns, green unfired bricks are stacked and brick walls
are built up to surround the unfired bricks. Each batch is
stacked, fired, cooled and must be unloaded before firing the
next batch. There is no chimney to vent emissions as the kiln
ventilates freely through the sides and roof. The naturally es-
caping emissions were sampled at or near-ambient tempera-
ture about 1 m from the roof throughout the day. The clamp
kiln smoke always appeared white with no apparent periods
of black smoke.

Generally the cheapest type of coal available is used in
South Asian kilns. Bricks are typically fired to 700–1100 ◦C,
consuming significant amounts of coal and biomass as de-
tailed elsewhere (Maithel et al., 2012). The practice of
biomass co-firing to reduce the use of coal is common as it

reduces expense, but co-firing in general is also known to re-
duce fossil-CO2 emissions and some criteria pollutants such
as NOx and SO2 (e.g., Al-Naiema et al., 2015). We expect
that the emissions change depending on the biomass-to-coal
blending ratios in South Asia and that the blend likely varies
considerably between kilns. In the two kilns we measured
the primary fuel was coal; however, the clamp kiln was more
substantially co-fired with biomass. The coal piles next to the
clamp kiln were adjacent to large piles of cut hardwood; thus,
the coal was likely co-fired with a substantial amount of hard-
wood and the emissions data confirms that. We note that we
were not on site long enough to measure the emissions from
the entire kiln lifetime. Thus, we cannot probe seasonal vari-
ation in brick kiln emissions. However, we did capture four
to five entire firing cycles from each kiln that should repre-
sent the emissions near the end of the dry season production
period. Some kiln operators suspect that these emissions may
reflect more efficient combustion (and more bricks per kilo-
gram fuel) than when the kilns are first started up in January
under conditions of lower ambient temperature.

2.2 Instrument details

2.2.1 Land-based Fourier transform infrared
(LA-FTIR) spectrometer

A rugged, cart-based, mobile FTIR (MIDAC, Inc.) designed
to access remote sampling locations (Christian et al., 2007)
was used for trace gas measurements. The system can run
on battery or generator power. The vibration-isolated opti-
cal bench consists of a MIDAC spectrometer with a Stir-
ling cycle cooled mercury–cadmium–telluride (MCT) detec-
tor (Ricor, Inc.) interfaced with a closed multipass White
cell (Infrared Analysis, Inc.) that is coated with a halocar-
bon wax (1500 Grade, Halocarbon Products Corp.) to mini-
mize surface losses (Yokelson et al., 2003). In the grab sam-
pling mode used for the FTIR trace gas data reported in
this paper, air samples are drawn into the cell by a down-
stream pump through several meters of 0.635 cm o.d. corru-
gated Teflon tubing. The air samples are then trapped in the
closed cell by Teflon valves and held for 2–3 min for sig-
nal averaging to increase sensitivity. Once the infrared (IR)
spectra of a grab sample are logged on the system computer
a new grab sample can be obtained. This facilitates collect-
ing many grab samples. Cell temperature and pressure are
also logged on the system computer (Minco TT176 RTD,
MKS Baratron 722A). Spectra were collected at a resolution
of 0.50 cm−1 covering a frequency range of 600–4200 cm−1.
Since the last report of the use of this system (Akagi et al.,
2013), several upgrades and changes were made: (1) the ad-
dition of a retroreflector to the White cell mirrors increased
the optical pathlength from 11 to 17.2 m, lowering previous
instrument detection limits; (2) renewing the Teflon cell coat-
ing with halocarbon wax to maintain good measurements of
ammonia (NH3), hydrogen chloride (HCl), hydrogen fluo-
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ride (HF), and other species prone to absorption on surfaces;
(3) mounting the mirrors to a stable carriage rather than the
previous method of gluing them to the cell walls; (4) the
abovementioned Stirling cycle detector, which gave the same
performance as a liquid-nitrogen-cooled detector without the
need for cryogens; (5) the addition of two logged flow meters
(APEX, Inc.) and filter holders to enable the system to collect
particulate matter on Teflon and quartz filters for subsequent
laboratory analyses. The new lower detection limits vary by
gas from less than 1 to∼ 100 ppb and are more than sufficient
for near-source ground-based sampling as concentrations are
much higher (e.g., ppm range) than in lofted smoke (Burl-
ing et al., 2011). Gas-phase species including carbon diox-
ide (CO2), carbon monoxide (CO), methane (CH4), acety-
lene (C2H2), ethylene (C2H4), propylene (C3H6), formalde-
hyde (HCHO), formic acid (HCOOH), methanol (CH3OH),
acetic acid (CH3COOH), furan (C4H4O), hydroxyacetone
(C3H6O2), phenol (C6H5OH), 1,3-butadiene (C4H6), nitric
oxide (NO), nitrogen dioxide (NO2), nitrous acid (HONO),
NH3, hydrogen cyanide (HCN), HCl, sulfur dioxide (SO2),
and HF were quantified by fitting selected regions of the mid-
IR transmission spectra with a synthetic calibration nonlinear
least-squares method (Griffith, 1996; Yokelson et al., 2007).
HF and HCl were the only gases observed to decay during
the several minutes of sample storage in the multipass cell.
Thus, for these species, the results are based on retrievals ap-
plied separately to the first 10 s of data in the cell (Yokelson et
al., 2003). An upper limit 1σ uncertainty for most mixing ra-
tios is±10 %. Post-mission calibrations with NIST-traceable
standards indicated that CO, CO2, and CH4 had an uncer-
tainty between 1 and 2 %, suggesting an upper limit on the
field measurement uncertainties for CO, CO2, and CH4 of
3–5 %. The NOx species have the highest interference from
water lines under the humid conditions in Nepal and the un-
certainty for NOx species is ∼ 25 % with the detection limits
being near the upper end of the reported range.

In addition to the primary grab sample mode, the FTIR
system was also used in a real-time mode to support filter
sampling when grab samples were not being obtained. Side-
by-side Teflon and quartz fiber filters preceded by cyclones to
reject particles with an aerodynamic diameter > 2.5 microns
were followed by logged flow meters. The flow meter output
was then combined and directed to the multipass cell where
IR spectra were recorded at ∼ 1.1 s time resolution. In real-
time or filter mode we did not employ signal averaging of
multiple scans and the signal-to-noise ratio is lower at high
time resolution. In addition, there could be sampling losses
of sticky species such as NH3 on the filters. However, the data
quality is still excellent for CO2, CO, and CH4. This allowed
the time-integrated mass of particle species to be compared
to the simultaneously sampled time-integrated mass of CO
and other gases and provided additional measurements of the
emissions for these three gases as described in detail in the
filter sampling companion paper (Jayarathne et al., 2016).

2.2.2 Whole-air sampling (WAS) in canisters

Whole-air samples were collected in evacuated 2 L stain-
less steel canisters equipped with a bellows valve and pre-
conditioned by pump-and-flush procedures (Simpson et al.,
2006). The canisters were filled to ambient pressure directly
in plumes (alternately from the FTIR cell for the zigzag
kiln) to enable subsequent measurement and analysis of a
large number of gases at UCI (Simpson et al., 2006). Species
quantified included CO2, CO, CH4, and 93 non-methane or-
ganic compounds (NMOCs) by gas chromatography coupled
with flame ionization detection, electron capture detection,
and quadrupole mass spectrometer detection as discussed in
greater detail by Simpson et al. (2011). Peaks of interest in
the chromatograms were individually inspected and manu-
ally integrated. The limit of detection for most NMOCs that
were sampled was 20 pptv, which was well below the ob-
served levels. Typically ∼ 60 WAS NMOCs were enhanced
in the source plumes, and we do not report the results for
most multiply halogenated species and the higher alkyl ni-
trates, which are mostly secondary photochemical products.
The species we do not report were not correlated with CO
and are generally not emitted directly by combustion (Simp-
son et al., 2011). Styrene is known to decay in canisters and
the styrene data may be lower limits. In total, 96 WAS canis-
ters were sent to Nepal to support the source characterization
and ambient monitoring site. Because we anticipated needing
canisters for a longer campaign, typically only one emissions
sample and one background sample were collected for each
source on each day. In total, 48 WAS canisters were filled in
all, mostly in April, along with FTIR and other instruments,
but some additional source and background measurements
were conducted by WAS alone in June after the main cam-
paign. The trace gas measurement techniques used for the
reported EFs are indicated in the “method” row near the top
of the Supplement and main tables.

2.2.3 Photoacoustic extinctiometers (PAX) at 405 and
870 nm

Particle absorption and scattering coefficients (Babs, Bscat
1/Mm) at 405 and 870 nm were measured directly at 1 s time
resolution using two photoacoustic extinctiometers (PAX,
Droplet Measurement Technologies, Inc., CO) and single
scattering albedo (SSA), and absorption Ångström exponent
(AAE) were calculated from these measurements. This mon-
itored the real-time absorption and scattering resulting from
BC and (indirectly) BrC. The two units were mounted with
AC/DC power options, a common inlet, desiccator (Silica
Gel), and gas scrubber (Purafil) in rugged, shock-mounted,
Pelican military-style hard cases. Air samples were drawn
in through conductive tubing followed by 1.0 µm size-cutoff
cyclones (URG) at 1 L min−1. The continuously sampled air
is split between a nephelometer and photoacoustic resonator
enabling simultaneous measurements of scattering and ab-
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sorption at high time resolution. Once drawn into the acous-
tic section, modulated laser radiation is passed through the
aerosol stream and absorbed by particles in the sample of
air. The energy of the absorbed radiation is transferred to the
surrounding air as heat and the resulting pressure changes
are detected by a sensitive microphone. Scattering coeffi-
cients at each wavelength were measured by a wide-angle in-
tegrating reciprocal nephelometer, using photodiodes to de-
tect the scattering of the laser light. The estimated uncer-
tainty in absorption and scattering measurements is ∼ 4–
11 % (Nakayama et al., 2015). Additional details on the
PAX instrument can be found elsewhere (Arnott et al., 2006;
Nakayama et al., 2015). Due to damage during shipping the
PAXs were not available until repaired partway through the
campaign and PAX data are therefore not available for a few
sources.

Calibrations of the two PAXs were performed frequently
during the deployment using the manufacturer recommended
scattering and absorption calibration procedures utilizing
ammonium sulfate particles and a kerosene lamp to gener-
ate pure scattering and strongly absorbing aerosols, respec-
tively. The calibrations of the scattering and absorption of
light were directly compared to measured extinction by ap-
plying the Beer–Lambert law to laser intensity attenuation in
the optical cavity (Arnott et al., 2000). As a quality control
measure, we frequently compared the measured total light
extinction (Babs+Bscat) to the independently measured laser
attenuation. For nearly all the 1 s data checked, the agree-
ment was within 10 % with no statistically significant bias;
consistent with (though not proof of) the error estimates in
Nakayama et al. (2015). The 405 nm laser in the PAX has
a common nominal wavelength that is usually not measured
precisely. After the mission a factory absorption calibration
was performed with NO2 gas that was within 1 % of the ex-
pected result (Nakayama et al., 2015). As part of this calibra-
tion, the laser wavelength was precisely measured as 401 nm.
This difference from the nominal 405 nm wavelength adds
1 % or less uncertainty to the AAE and absorption attribu-
tion (Sect. 2.3). We have continued to refer to the wavelength
as 405 nm since this is a standard nominal wavelength for
aerosol optical measurements.

2.2.4 Other measurements

Two instruments provided CO2 data that were used in the
analysis of the PAX data. An ICIMOD Picarro (G2401) cav-
ity ring-down spectrometer measured CO2, CO, CH4, and
H2O in real time. A Drexel LI-COR (LI-820) that was fac-
tory calibrated immediately before the campaign also mea-
sured CO2 in real time. The sampling inlet of the Picarro
and/or LI-COR was colocated with the PAX inlets so that
the time-integrated PAX particle data were easily ratioed
to time-integrated CO2, allowing straightforward, accurate
synthesis of the PAX data with the mobile FTIR and WAS
grab sample measurements as described below. A suite of

other instruments (mini aerosol mass spectrometer (mAMS);
seven wavelength, dual spot aethalometer (model AE33)
from Drexel) and the filters employed during the source sam-
pling for subsequent analysis at UI will be described in more
detail in companion papers (Jayarathne et al., 2016; Goetz et
al., 2016).

2.3 Emission ratio and emission factor determination

The excess mixing ratios above the background level (de-
noted 1X for each gas-phase species “X”) were calculated
for all gas-phase species. The molar emission ratio (ER) for
each gaseous speciesX relative to CO or CO2 was calculated
for the FTIR and WAS species. For the single WAS sam-
ple of any source the ER was simply 1X divided by 1CO
or 1CO2. The source-average ER for each FTIR species,
typically measured in multiple grab samples, was estimated
from the slope of the linear least-squares line (with the in-
tercept forced to zero) when plotting 1X vs. 1CO or 1CO2
for all samples of the source (Yokelson et al., 2009; Chris-
tian et al., 2010). Forcing the intercept effectively weights
the points obtained at higher concentrations that reflect more
emissions and have greater signal-to-noise ratios so that er-
ror is dominated by calibration uncertainty. Alternate data
reduction methods usually have little effect on the results as
discussed elsewhere (Yokelson et al., 1999). For a handful of
species measured by both FTIR and WAS, it is possible to av-
erage the ERs from each instrument for a source together, as
in Yokelson et al. (2009). However, in this study, due to the
large number of FTIR samples (∼ 5–30) and small number
of WAS samples (typically one) of each source, we simply
used the FTIR ER for “overlap species” (primarily CH3OH,
C2H4, C2H2, and CH4).

From the ERs, emission factors (EFs) were derived in units
of grams of species X emitted per kilogram of dry biomass
burned by the carbon mass balance method, which assumes
that all of the major carbon-containing emissions have been
measured (Ward and Radke, 1993; Yokelson et al., 1996,
1999):

EF(X)
(

gkg−1
)
=FC× 1000×

MMx

AMC

×

1X
1CO∑n

j=1

(
NCj ×

1Cj
1CO

) , (1)

where FC is the measured carbon mass fraction of the fuel;
MMx is the molar mass of species X; AMC is the atomic
mass of carbon (12 g mol−1); NCj is the number of carbon
atoms in species j ; n is the total number of measured species;
1Cj or1X referenced to1CO are the source-average molar
emission ratios for the respective species. The carbon frac-
tion was either measured directly (ALS Analytics, Tucson,
Table S3) or assumed based on measurements of similar fuel
types (Stockwell et al., 2014). The denominator of the last
term in Eq. (1) estimates total carbon. Based on many com-
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bustion sources measured in the past, the species CO2, CO,
and CH4 usually comprise 97–99 % of the total carbon emis-
sions (Akagi et al., 2011; Stockwell et al., 2015). Our to-
tal carbon estimate includes all the gases measured by both
FTIR and WAS in grab samples of a source, and we in-
clude the carbon in elemental and organic carbon (ratioed
to CO) measured during filter sampling. Ignoring the car-
bon emissions not measurable by our suite of instrumenta-
tion (typically higher molecular-weight oxygenated organic
gases) likely inflates the EF estimates by less than ∼ 1–2 %
(Andreae and Merlet, 2001; Yokelson et al., 2013; Stockwell
et al., 2015).

Biomass fire emissions vary naturally as the mix of com-
bustion processes varies. The relative amount of smolder-
ing and flaming combustion during a fire can be roughly
estimated from the modified combustion efficiency (MCE).
MCE is defined as the ratio 1CO2/ (1CO2+1CO) and is
mathematically equivalent to (1 / (1+1CO/1CO2) (Yokel-
son et al., 1996). Flaming and smoldering combustion of-
ten occur simultaneously during biomass fires, but a very
high MCE (∼ 0.99) designates nearly pure flaming (more
complete oxidation), while a lower MCE (∼ 0.75–0.84 for
biomass fuels) designates pure smoldering. Source-averaged
MCE was computed for all sources using the source aver-
age 1CO /1CO2 ratio as above. In the context of biomass
or other solid fuels, smoldering refers to a mix of solid-fuel
pyrolysis and gasification (Yokelson et al., 1997) that does
not occur in the liquid fuel sources we sampled (e.g., motor-
cycles, generators, pumps). However, given the large differ-
ence in the heat of formation for CO2 and CO (283 kJ mol−1)
and CO being the most abundant carbon-containing emission
from incomplete combustion, MCE and 1CO /1CO2 were
useful qualitative probes of their general operating efficiency.

The time-integrated excess Babs and Bscat from the PAXs
were used to directly calculate the source average single scat-
tering albedo (SSA, defined as Bscat/(Bscat+Babs)) at both
870 and 405 nm for each source. The PAX time-integrated
excess Babs values at 870 and 405 nm were used directly to
calculate each source-average AAE.

AAE=−
log

(
Babs,1
Babs,2

)
log

(
λ1
λ2

) (2)

Emission factors for BC and BrC were calculated from the
light absorption measurements made by PAXs at 870 and
405 nm (described in Sect. 2.2.3). Aerosol absorption is a
key parameter in climate models; however, inferring absorp-
tion from total attenuation of light by particles trapped on
a filter or from the assumed optical properties of a mass
measured by thermal or optical processing, incandescence,
etc., can sometimes suffer from artifacts (Subramanian et
al., 2007). In the PAX, the 870 nm laser is absorbed in situ
by black carbon containing particles only without filter or
filter-loading effects that can be difficult to correct. We di-

rectly measured aerosol absorption (Babs, Mm−1) and used
the manufacturer-recommended mass absorption coefficient
(MAC) (4.74 m2 g−1 at 870 nm) to calculate the BC concen-
tration (µg m−3). Our BC mass values are easily scaled if
a user feels a different MAC is preferable for one or more
sources. The total uncertainty in the MAC is not well known,
but the coefficient of variation recommended by the review
article our BC MAC is based on is 16 % at 550 nm for fresh,
uncoated combustion aerosol (Bond and Bergstrom, 2006).
However, some fresh BC may have some coating and the as-
sumption of an AAE of 1 to calculate the MAC at 870 nm
is not exact. Overall, ∼ 25–30 % is probably a reasonable
“typical” uncertainty, with the error being asymmetric in
that we are more likely to overestimate BC mass due to
coating-induced MAC increases. To a good approximation,
sp2-hybridized carbon has an AAE of 1.0± 0.2 and absorbs
light proportional to frequency. Thus, Babs due only to BC at
405 nm would be expected to equal 2.148×Babs at 870 nm.
This assumes that any coating effects are similar at both
wavelengths, and it has other assumptions considered reason-
ably valid, especially in biomass burning plumes by Lack and
Langridge (2013). Following these authors, we assumed that
excess absorption at 405 nm, above the projected amount, is
associated with BrC absorption, and the BrC (µg m−3) con-
centration was calculated using a literature-recommended
brown carbon MAC of 0.98± 0.45 m2 g−1 at 404 nm (Lack
and Langridge, 2013). The BrC mass calculated this way is
considered roughly equivalent to the total organic aerosol
(OA) mass, which as a whole weakly absorbs UV light, and
not the mass of the actual chromophores. The MAC of bulk
OA varies substantially and the BrC mass we calculate with
the single average MAC that we used is only qualitatively
similar to bulk OA mass for “average” aerosol and even less
similar to bulk OA for non-average aerosol (Saleh et al.,
2014). The BrC mass estimated by PAX in this way was in-
dependently sampled and worth reporting, but the filters and
mAMS provide additional samples of the mass of organic
aerosol emissions that have lower per-sample uncertainty for
mass. Most importantly, the optical properties from the PAX
(SSA, AAE, and absorption EFs calculated as detailed be-
low) are not impacted by MAC variability or filter artifacts.
In the case where only a mass emission is reported, a user
has to calculate the absorption and scattering with uncertain
MAC or mass scattering coefficient values while also retain-
ing any systematic error in the mass measurement, though we
note that mass measured by a PAX can always be converted
back to absorption (using the same MAC) without adding
error. As mentioned above, the PAXs were run in series or
in parallel with a CO2 monitor. The mass ratio of BC and
BrC to the simultaneous colocated CO2, measured by either
the Picarro or LI-COR, was multiplied by the FTIR-WAS
grab sample EF for CO2 to determine mass EFs for BC and
BrC in g kg−1. From the measured ratios of Babs and Bscat to
CO2, the EFs for scattering and absorption at 870 and 405 nm
(EF Babs, EF Bscat) were calculated and reported in units of
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square meters emitted per kilogram of dry fuel burned. We
reiterate that the absorption and scattering EFs do not de-
pend on assumptions about the AAE of BC or MAC values.
Both the CO2 and PAX sample were often diluted by using
a Dekati Ltd. Axial Diluter (DAD-100), which was factory
calibrated to deliver 15.87 SLPM (standard liter per minute)
of dilution air at an atmospheric pressure of 1004.6 mbar.
Since both instruments samples were diluted by the same
amount the dilution factor does not impact the calculation
of PAX /CO2 ratios. On the other hand, the dilution could
have some impact on gas–particle partitioning and the mass
of BrC measured. More on the dilution system (and addi-
tional aerosol measurements) will be in a forthcoming com-
panion paper (Goetz et al., 2016). Related measurements of
elemental and organic carbon on the filters will be discussed
by Jayarathne et al. (2016).

2.4 Emission factors for sources with mixed fuels

Several of the cooking fires burned a mix of wood and dung,
mixed garbage was burned, and the brick kilns co-fired some
biomass with the dominant coal fuel. It is not possible to
quantify the exact contribution of each fuel to the overall fuel
consumption during a specific measurement period or even in
total. Thus, for the mixed-fuel cooking fires, we simply as-
sumed an equal amount of wood (0.45 C) and dung (0.35 C)
burned and used the average carbon fraction for the two fuels
(0.40) (Stockwell et al., 2014; Table S3). For mixed garbage
we used a rigorous laboratory carbon content determination
(0.50; Stockwell et al., 2014) as opposed to a field determi-
nation that relied in part on visual estimates of the amount of
components (0.40; Christian et al., 2010). For the zigzag kiln,
we used the measured carbon content of the coal (0.722). For
the clamp kiln, which likely had more co-fired biomass, we
used a weighted carbon content assuming 10 % biomass (at
a generic 0.50 carbon content) and 90 % coal (measured car-
bon content 0.660). The weighted average carbon content for
the clamp kiln is about 2.5 % lower than for the pure coal.
The correction is speculative but in the appropriate direction.
The assumed carbon fractions are indicated in each table and
the new fuel analyses performed for NAMaSTE for several
fuel types are compiled in Table S3. For mixtures differing
from those we used, the EFs scale with the assumed carbon
fraction.

There are a few unavoidable additional uncertainties in as-
signing EFs to specific fuels for the brick kilns due to the pos-
sibility of emissions from the clay during firing. An estimate
of the impact can be made from literature data. Clay typically
contains well under 1 % organic material, and some can be
lost during firing though residual C can increase the strength
of the fired product and limited permeability makes complete
combustion of the C in the clay difficult to achieve (Wattel-
Koekkoek et al., 2001; Organic Matter in Clay, 2015). For
a generous exploratory estimate, we can assume the green
bricks are 1 % by mass organic matter that is all C. The

brick / coal mass ratio reported by Weyant et al. (2014) is
6–26, and we take 15 as an average. Overall, 15 kg of clay
at 1 % C would have 150 g of C and 1 kg of coal at 70 % C
would have 700 g C. Thus, if all of the C in the clay was
emitted, it would cause about 18 % of the total C emissions
from the production process as an upper limit. The impact
on the EF per kilogram coal fuel that we calculated by the
carbon mass balance (CMB) method depends on the species-
specific ER to CO2 in the emissions from the clay C. If the
ER for a species due to heating clay C is the same as burn-
ing coal C, then there is no effect on the EF computed by the
CMB per kilogram coal even though some of the species is
actually coming from the clay. If the ER for “heating” clay
C is much higher or lower than the ER for burning coal C
(e.g., a factor 10), then for some non-CO2 species, we would
calculate increases or decreases in the CMB-calculated EFs
relative to what actually is produced from the coal fuel. These
are only large if a species is emitted mostly from clay com-
bustion (vide infra).

3 Results and discussion

3.1 Overview of aerosol optical properties

As mentioned above, we measured absorption and scattering
coefficients directly and calculated single scattering albedo
at 405 and 870 nm. One wavelength-independent SSA value
is often assumed for BB aerosol, but we find, as seen previ-
ously, that the SSA varies by wavelength for each source (Liu
et al., 2014; McMeeking et al., 2014). The AAE is related to
the wavelength dependence of the absorption cross section.
The AAE for pure BC is assumed to be∼ 1, while higher val-
ues of AAE indicate relatively more UV absorption and the
presence of BrC. Figure 1 plots the source-average AAE vs.
the source-average SSA at 405 nm showing that high AAE is
associated with high SSA. In Fig. 1 we show source-averaged
AAEs ranging from ∼ 1–5 and source-averaged SSA values
at 405 nm ranging from 0.37–0.95 for the sources tested in
this study. The error bars are 1 standard deviation of the aver-
age for each source type sampled more than once. The “high-
AAE” sources appearing toward the upper right-hand corner
(e.g., dung and open wood cooking, clamp kiln) are asso-
ciated with significant light absorption that would be over-
looked by a consideration of BC alone. We note that both
PAXs were not operational during the generator and motor-
cycle sampling days, and the PAX 870 was not operational
during the irrigation pump sampling and for several garbage
burns. We assumed that the pumps emitted only BC (this as-
sumption is supported by the very low SSA) and used the
MAC of BC at 405 nm (10.19 m2 g−1) to calculate BC for
this one source (Bond and Bergstrom, 2006). Both PAXs
were operational for only one garbage burn, which had a low
AAE near 1. Additional data from the aethalometer and fil-
ters, including for tests where one or both PAXs were not op-
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Figure 1. The absorption Ångström exponent (AAE) calculated at 405 and 870 nm as a function of single scattering albedo (SSA) at 405 nm
for fuel types measured during the NAMaSTE campaign. The error bars represent ±1 standard deviation of the AAE measured for different
burns (or different samples in the case of brick kilns). Note: “hw” indicates hardwood fuels. The AAE for agricultural pumps was not
measured but is assumed to be 1 because the SSA at 405 nm was indicative of pure BC. AAE was only measured on one garbage burning fire
(value of 0.971) though the SSA at 405 nm on another garbage burning fire indicates that its AAE was larger than 1.

erational, will be presented in companion papers (Jayarathne
et al., 2016; Goetz et al., 2016).

It is important to consider the differences in optical prop-
erties for the aerosol emitted by the various biofuel–stove
combinations used in this understudied region with high
levels of biofuel use. Dung-fired cooking had a signifi-
cantly higher AAE (4.63± 0.68) than cooking with hard-
wood (3.01± 0.10). The AAE is also generally lower for
improved stove types (1.68± 0.47) when compared to tra-
ditional open cooking (i.e., without an insulated combustion
chamber) (Fig. 1). In general, the optical properties vary sig-
nificantly by fuel type and the mix of combustion processes.
As established in previous studies (e.g., Christian et al., 2003;
Liu et al., 2014), BC is emitted by flaming combustion and
BrC is emitted primarily during smoldering combustion, and
both can contribute strongly to the total overall absorption.
Thus, the fuels that burned at a higher average MCE usually
produced relatively more BC, which is also reflected in lower
AAE and SSA values. These trends are similar to those ob-
served during the third and fourth Fire Lab at Missoula Ex-
periment (FLAME-3, -4) (Lewis et al., 2008; McMeeking et
al., 2014; Liu et al., 2014). Additional PAX results will be
discussed by fuel type along with the trace gas results in the
following sections.

3.2 Motorcycle emissions

The average EFs (g kg−1) based on FTIR and WAS for the
pre- and post-service fleet are shown in Table 1, and bike-
specific pre and post results are included in Supplement Ta-
ble S4. As a fleet, we found that after servicing, MCE, NOx ,
and most NMOCs were slightly reduced and CO slightly in-

Table 1. Fleet average emission factors (g kg−1) and standard devi-
ation for two-wheeled vehicle measurements.

Compound (formula) EF pre-service EF post-service
fleet avg (SD) fleet avg (SD)

Method FTIR FTIR
MCE 0.619 0.601
Carbon dioxide (CO2) 1846 (690) 1816 (562)
Carbon monoxide (CO) 710 (389) 761 (327)
Methane (CH4) 7.60 (7.24) 6.74 (4.54)
Acetylene (C2H2) 11.7 (11.1) 7.89 (5.83)
Ethylene (C2H4) 13.2 (3.9) 11.4 (4.2)
Propylene (C3H6) 3.32 (0.75) 2.58 (1.03)
Formaldehyde (HCHO) 0.548 0.535
Methanol (CH3OH) bdl bdl
Formic acid (HCOOH) 9.57×10−2 5.95×10−2

(3.57×10−2) (1.84×10−2)
Acetic acid (CH3COOH) bdl bdl
Glycolaldehyde (C2H4O2) bdl bdl
Furan (C4H4O) bdl bdl
Hydroxyacetone (C3H6O2) 2.10 (3.18) 2.41 (0.99)
Phenol (C6H5OH) 4.84 (3.55) 3.02 (2.29)
1,3-Butadiene (C4H6) 1.30 (0.51) 1.19 (0.56)
Isoprene (C5H8) bdl bdl
Ammonia (NH3) 0.113 (0.034) 0.032 (0.023)
Hydrogen cyanide (HCN) 0.841 (0.428) 0.678 (0.174)
Nitrous acid (HONO) bdl bdl
Sulfur dioxide (SO2) bdl bdl
Hydrogen fluoride (HF) bdl bdl
Hydrogen chloride (HCl) bdl bdl
Nitric oxide (NO) 2.94 (2.39) 1.89 (0.81)
Nitrogen dioxide (NO2) bdl bdl

Note: “bdl” indicates below the detection limit; C fraction: 0.85 – source is Kirchstetter
et al. (1999).
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creased; however, these fleet-average changes are not sta-
tistically significant given the high variability in EF. Inter-
estingly, for individual motorbike-specific comparisons (Ta-
ble S4), in four out of five bikes, the MCE actually decreased
after servicing, indicating less efficient (though not neces-
sarily less “clean”) combustion, but this result is not statis-
tically significant. To ensure that effects such as background
drift did not cause this result, we verified that the same re-
sults occur when obtaining slopes from plots using absolute
(i.e., not background-corrected) mixing ratios. A similar lack
of reduction in gas-phase pollutants has been reported in the
literature following repair and maintenance (Chiang et al.,
2008) and has been attributed to the complexity in adjusting
carburetors to optimal combustion conditions (Escalambre,
1995). Our high CO emissions did not always correlate with
high hydrocarbon emissions. While we do not know the exact
cause of this, this effect has been seen in other vehicle stud-
ies with a variety of explanations (Beaton et al., 1992; Zhang
et al., 1995). While the gaseous pollutants were not signifi-
cantly reduced post-service, the fleet’s total particulate emis-
sions did decrease significantly, and we refer to Jayarathne et
al. (2016) for a detailed comparison.

CO had the highest emissions of any gas after CO2, and
the FTIR-measured average EFs pre- and post-service over
700 g kg−1 are about 10 times the typical EF for CO ob-
served in BB. The FTIR-measured average MCE for the post-
service motorcycles was ∼ 0.60, equivalent to a CO /CO2
molar ER of ∼ 0.66, dramatically highlighting the poor ef-
ficiency of the engines. We were initially surprised by this
result, but it is confirmed by WAS in that the one WAS sam-
ple of start-up and idling emissions returned a CO /CO2 ER
(0.789) that is within the FTIR-sample range. In fact, even
higher CO /CO2 ERs (3.2–4.2) are generated for the start-up
of motorcycles in the IVE model, which is based on sampling
in developing countries (Oanh et al., 2012; Shrestha et al.,
2013). Of 11 227 vehicles of all types tested by remote sens-
ing during on-road use in Kathmandu in 1993, about 2000
had a CO /CO2 ER higher than 0.66 (fleet average 0.39,
range 0–3.8, Zhang et al., 1995).

The next most abundant emissions after CO were C2 hy-
drocarbons (∼ 24 g kg−1), BTEX (benzene, toluene, ethyl-
benzene, and xylenes) compounds (∼ 15 g kg−1) and then
the sum of measured oxygenated volatile organic compounds
(OVOCs) and CH4 each at ∼ 7 g kg−1. The OVOC from this
source were mostly phenol, hydroxyacetone, and acetone
(Tables 1 and S4). The BTEX and acetone data are from
the one motorcycle that was analyzed by WAS pre-service.
The WAS provided several overlap species with the FTIR
and many additional non-methane hydrocarbons (NMHCs)
not measured by FTIR. First, we note, in agreement with the
FTIR, that ethylene and acetylene were the most abundant
WAS NMHC species and that they accounted for ∼ 38 % of
the total WAS NMHC emissions. The acetylene-to-ethylene
ratio in this sample was 0.45, which is similar to previ-
ous roadside studies of all traffic (Tsai et al., 2006; Ho et

al., 2009). Significantly, the WAS sample showed high con-
centrations of BTEX compounds, some of which are im-
portant carcinogens and all of which can lead to signifi-
cant secondary organic aerosol (SOA) production (Platt et
al., 2014). Toluene is a common gasoline additive and is
sometimes used as a tracer for gasoline evaporation (Tsai
et al., 2006). However, in our motorcycle data, aromatics
account for ∼ 31 % of the NMHC in the exhaust emis-
sions, with toluene being the most abundant aromatic. Platt
et al. (2014) measured BTEX emission factors from about
10 to 100 g kg−1 (a range for driving to idling) for two-
stroke motor scooter exhaust, also finding that toluene was
the most abundant aromatic and with the BTEX accounting
for ∼ 40 % of VOC. The combustion process in motorcycle
engines is generally less efficient than in automobile engines
(Platt et al., 2014), and the incomplete combustion can lead
to emissions of many NMHC components in the gasoline.
For instance, the exhaust emissions of branched C5-C6 alka-
nes, including 2-methylpentane and i-pentane (sometimes a
tracer for gasoline evaporation; Morikawa et al., 1998; Guo
et al., 2006) were also significant in the motorcycle exhaust.
Previous studies also found that the VOC emission profile
from motorcycle exhaust was similar to gasoline headspace
analysis (Liu et al., 2008). In summary, inefficient motorcy-
cle engines produce exhaust containing a suite of NMHCs
that overlaps with those produced by fuel evaporation. How-
ever, there may be significant variability in headspace and
exhaust measurements as observed by Lyu et al. (2016).

The air toxic and common BB tracer HCN was emitted by
the motorcycles at about 1/10 the ER to CO typically mea-
sured for BB. However, because of the very high motorcycle
CO emissions, the EF for HCN for motorcycles was actually
similar to that for BB. This is of importance for health effects
and the use of HCN as a BB tracer in urban areas (Moussa
et al., 2016), especially in developing countries where mo-
torcycles are prevalent (Yokelson et al., 2007; Crounse et
al., 2009). A few other emissions stood out in the dataset,
including high emissions of 1,3-butadiene (∼ 1.3 g kg−1).
While 1,3-butadiene is not a component of gasoline, it is a
known component of vehicle exhaust (e.g., Duffy and Nel-
son, 1996) and is believed to originate from the combustion
of olefins (Perry and Gee, 1995). The EPA has highlighted
1,3-butadiene as having the highest cancer risk of air toxics
emitted by US motor vehicles (USEPA, 1993), and exposure
in densely populated urban centers can have significant neg-
ative health impacts.

One scooter was sampled by FTIR during this campaign
and the CO emissions of the smaller scooter engine were
only one fourth to one half those of the motorcycles (Ta-
ble S4). The scooter exhaust emissions were also signifi-
cantly lower for most other species captured by FTIR. The
scooter, however, was the only motorbike sampled that pro-
duced detectable formaldehyde, a known carcinogen, irri-
tant, and important radical precursor in urban atmospheres
(Vaughan et al., 1986; Volkamer et al., 2010).
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It is important to note that the average EFs from this study
are not intended to represent the entire Kathmandu fleet of
vehicles (or even all motorcycle use) as there is significant
emissions variability between vehicles depending on run-
ning conditions (road conditions, driving patterns, mainte-
nance, emissions control technology; Holmén and Niemeier,
1998; Popp et al., 1999) and engine specifics (model, size,
age, power, fuel composition, combustion temperature and
pressure, etc.; Zachariadis et al., 2001; Zavala et al., 2006).
Larger studies similar to Zhang et al. (1995) are needed to
get fleet averages. However, motorcycles and motor scooters
have been identified as major contributors to transport sector
pollution in Kathmandu (Shrestha et al., 2013) and elsewhere
(Oanh et al., 2012; Platt et al., 2014), and we provide chem-
ically detailed real-world EFs for motorcycles under some
common operating conditions that were previously unmea-
sured in Kathmandu.

Because of the diversity in fleet characteristics and how
operating conditions are subdivided, it is difficult to compare
our results to other studies, but some of the species we mea-
sured are explicitly provided in other vehicle emissions esti-
mates (Oanh et al., 2012; Shrestha et al., 2013; Platt et al.,
2014). Probably the most direct comparison is with Oanh et
al. (2012), who reported EFs (in g km−1) specifically for mo-
torcycles for both start-up and running for the Hanoi 2008
average fleet based on the IVE that included some overlap
species with our study (NOx , CH4, acetaldehyde, formalde-
hyde, benzene, and 1,3-butadiene). Except for 1,3-butadiene
our average ratios to CO for these species for start-up and
idling are only 3–26 % of theirs for start-up or running.
Zhang et al. (1995) noted that partially functional catalytic
converters convert VOC to CO (rather than CO2) lowering
the VOC /CO ratio and also that these devices were becom-
ing more common in the overall Kathmandu fleet, which
points to emission control technology as a source of vari-
ability. The motorcycles we tested were all four-stroke and
built by some of the world’s largest manufacturers in India,
where catalytic converters are required on two-stroke vehi-
cles but were not required for four-stroke bikes until 2015.
The Indian motorcycle emissions standards are based on an
idling test and become increasingly stringent every 5 years
(factor of 14.25 reduction for CO from 1991 to 2010). In re-
sponse, a variety of emission control measures are incorpo-
rated in the motorcycle engines to reduce “engine out” emis-
sions as opposed to “after treatment”. Some of these mea-
sures are described in detail by Iyer (2012), while others are
proprietary. The durability of many of these measures is very
low (Ntziachristos et al., 2006, 2009), meaning they dete-
riorate with age despite minor service. Fuel quality (adul-
teration) is also noted as a widespread issue for emissions
control (Iyer, 2012). In summary, it is quite possible that our
VOC /CO ratios are lower than Oanh et al. (2012), mostly
because of increased prevalence of emissions control tech-
nology (although poorly maintained) in Kathmandu in 2015
compared to Hanoi in 2008.

In general, our emission ratios can be used with, e.g.,
CO EFs from other studies to roughly estimate additional
chemical details for operating conditions we did not sam-
ple. It is also interesting that we observed that the emitted
gases did not change significantly after servicing. It is pos-
sible that gas-phase pollutants would have decreased post-
service under “cruising” conditions, but we were limited to
testing start-up and idling emissions. A study in Hong Kong
found that replacing old catalytic converters had a large im-
pact on emissions, but minor servicing did not (Lyu et al.,
2016). Thus, major servicing might be required to mitigate
gas-phase pollutants in general. Finally, our filter results sug-
gested that the particulate matter (PM) emissions were re-
duced post-service (Jayarathne et al., 2016). Therefore, it is
likely that minor servicing of motorcycles is beneficial if it
reduces the PM without making the vast majority of the gases
significantly worse. The EFs (in g kg−1) here could theoret-
ically be converted to fuel-based EFs (g km−1) using a con-
version factor based on motorcycle fuel economy. However,
this is a complex process in practice (Clairotte et al., 2012),
and it would probably be more meaningful to combine our
ER to CO with fuel-based CO emission factors measured un-
der the appropriate conditions.

3.3 Generator emissions

Three generators (two diesel and one gasoline) were sampled
about 1 m downstream of the exhaust manifold and the EFs
are shown in Table S5. The larger diesel generator located
on the ICIMOD campus is professionally maintained and
had a much smaller EF CO (4.10 g kg−1) and a higher MCE
(0.998) than the smaller (rented) diesel generator (MCE
0.962; EF CO 76.1 g kg−1). The smaller rented diesel gen-
erator had 18–150 times higher emissions for the five non-
CO2 gases measured from both sources. The one gaso-
line generator we sampled had much higher CO emissions
(> 1000 g kg−1) and was much less efficient (MCE 0.437)
than both diesel generators. This is similar to the gasoline-
powered motorcycles discussed in Sect. 3.2 that also had high
EFs for CO (> 700 g kg−1) with generally low MCEs.

Not surprisingly, the one diesel generator sampled by
FTIR (the small rental) did emit high concentrations of NOx
(∼ 24 g kg−1), while NOx emissions remained below the de-
tection limit for the gasoline-powered generator sampled by
FTIR (Vestreng et al., 2009). NO is the main form of fresh
combustion NOx , but it is converted to NO2 within minutes
and peroxyacetyl nitrate and nitrate within a few hours (af-
fecting aerosol and O3 levels) as discussed elsewhere (Ak-
agi et al., 2013; Liu et al., 2016). The gasoline-powered
generator emitted more NMHCs than both diesel generators
and likely produces high secondary aerosol that has been
observed in gasoline vehicle emission studies (Platt et al.,
2013). We measured gasoline generator BTEX emissions
that were ∼ 20 times greater than those from the large diesel
generator and note that the SOA yields from the photooxi-
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dation of m-xylene, toluene, and benzene are significant (Ng
et al., 2007). We were able to measure HCHO emissions by
FTIR from the small diesel generator (2.75 g kg−1) and the
gasoline generator (0.61 g kg−1). Even though the diesel gen-
erator ran much more cleanly overall (for gas-phase pollu-
tants), it produced significantly more HCHO than the gaso-
line generator and we recall that HCHO was below the de-
tection limit for the gasoline-powered motorcycles we mea-
sured. This suggests that diesel may tend to produce higher
HCHO emissions than gasoline. As mentioned in Sect. 3.2,
HCHO is an air toxic and is important in atmospheric chem-
istry. Overall, OVOCs were not clearly associated with ei-
ther fuel, with the gasoline generator having higher EFs for
acetaldehyde, acetone, phenol, and furan but lower EFs for
HCHO and organic acids.

Other evident differences between the generators were po-
tentially based on fuel. The large well-maintained diesel gen-
erator emitted more of the heavier NMHCs including hep-
tane, octane, nonane, decane, and methylcyclohexane than
the lesser-maintained gasoline generator. The gasoline gen-
erator had much higher EFs for the smaller-chain NMHCs
(C2H2, C2H4, C2H6, C3H6, etc.). While the diesel fuel gen-
erators we sampled burned more cleanly overall in terms of
gas-phase pollutants, diesel is normally considered a much
dirtier fuel in terms of soot production. The two PAX instru-
ments were not operational for sampling generators, but fil-
ters were collected and demonstrated a higher EF PM for the
small diesel generator than the gasoline generator, as will be
highlighted by Jayarathne et al. (2016).

We were able to sample both the smaller diesel genera-
tor and the gasoline generator during both start-up and free-
running conditions. The diesel generator produced concen-
trations about twice as high for most measured species dur-
ing start-up as opposed to free-running conditions, while the
gasoline-fueled generator did not show these start-up con-
centration spikes. Sharp emission spikes peaking during both
cold and hot start-ups of diesel engines have been observed
previously (Gullet et al., 2006). This is often attributed to
periods of incomplete combustion during ignition and could
have significant impacts on air quality as power cuts are a
frequent, intermittent occurrence throughout the valley.

In summary, the well-maintained diesel generator had
much lower EFs for most overlapping gases measured (ex-
cept large alkanes, which were a minor overall component),
but gasoline could have advantages in terms of NOx and
PM emissions at the cost of increases in most other pollu-
tants unless they could be reduced by better maintenance.
Although vehicular emissions are most commonly reported,
emissions from gasoline- and diesel-powered generators can
also have large impacts in urban regions subject to signifi-
cant load shedding, which is relevant throughout Nepal and
especially in the Kathmandu Valley (World Bank, 2014).

3.4 Agricultural diesel pump emissions

In this study, two groundwater irrigation diesel pumps were
sampled by FTIR and the EFs are reported in Table 2. In ad-
dition, a surface-water irrigation pump was sampled by WAS
canisters only and showed massively higher CO emissions
than the two other pumps in our study indicating that it was
probably gasoline-powered. The WAS data may be mainly of
interest to characterize old or poorly maintained pumps and
the EFs are included in Supplement Table S6.

For the two diesel pumps sampled by FTIR, the grab sam-
ples during cold start-up differed from the samples during
regular continuous operation by a much larger degree than
the variability in grab samples for the other sources, so we
computed EF by two methods. Method one is our standard
approach based on the ER plot using all the samples. The
start-up emissions can be outliers in this approach and get
lower weight accordingly. Thus, we also computed ERs from
the sum of the individual ERs and used those to generate a
second set of EF that weights the start-up emissions more.
Our standard approach yields the EFs shown in Table 2,
columns 2 and 4, with an average of those two columns in
column 6. We have included columns 3 and 5 with EFs calcu-
lated from the sum of excess emissions that emphasizes start-
up more. The alternate EF calculation reflects the increased
emission of hydrocarbon species during ignition. CO also in-
creases substantially, while NOx decreases slightly. We be-
lieve the most representative EFs for model input are taken
from the standard approach that does not add weight to the
start-up conditions, as most pumps are likely operated over
longer periods of time. However, all the data are provided,
should a user prefer a different approach.

Although the 870 nm PAX was not operational on this day,
the EFs (m2 kg−1) of Babs and Bscat for aerosols measured at
405 nm and the SSA are reported in Table 2 for the com-
plete sampling cycle. The SSA at 405 nm (0.405± 0.137) in-
dicates that the diesel pump emissions were dominated by
strongly absorbing aerosols, and if we assume there are no
BrC emissions from this source, a reasonable assumption
supported by the AE33 data, the absorption at 405 nm can be
used to get a rough estimate for EF BC. The average EF BC
(5.72± 0.58 g kg−1) is very high compared to typical values
closer to 1 g kg−1 for most sources.

From the average emissions in Table 2, we see that the
two pumps sampled by FTIR were not as prolific emit-
ters for most pollutants as many other sources sampled in
this study. However, the emissions of NOx and absorbing
aerosol were comparatively high. Especially taken together,
the emissions from diesel-powered generators and agricul-
tural water pumps are likely significant in both urban and ru-
ral regions of Nepal and should be included in updated emis-
sions inventories.
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Table 2. Emission factors (g kg−1) for agricultural diesel irrigation pumps including EFs weighting only start-up emissions.

Compound (formula) EF Ag pump 1 EF Ag pump 1 EF Ag pump 2 EF Ag pump 2 EF Ag pumps
emphasize start-up emphasize start-up avg (SD)

Method FTIR FTIR FTIR FTIR –
MCE 0.987 0.974 0.996 0.990 0.992
Carbon dioxide (CO2) 3103 3038 3161 3133 3132 (41)
Carbon monoxide (CO) 26.0 51.3 7.36 20.2 16.7 (13.2)
Methane (CH4) 3.80 6.14 1.41 2.85 2.61 (1.69)
Acetylene (C2H2) 0.413 2.18 0.08 0.748 0.246 (0.237)
Ethylene (C2H4) 5.37 9.15 1.47 3.04 3.42 (2.75)
Propylene (C3H6) 1.85 3.26 0.424 0.894 1.14 (1.01)
Formaldehyde (HCHO) 0.506 1.23 5.29×10−2 0.175 0.280 (0.320)
Methanol (CH3OH) 3.59×10−2 0.119 5.77×10−3 1.33×10−2 2.08×10−2

(2.13×10−2)
Formic acid (HCOOH) bdl bdl bdl bdl bdl
Acetic acid (CH3COOH) bdl bdl bdl bdl bdl
Glycolaldehyde (C2H4O2) bdl bdl bdl bdl bdl
Furan (C4H4O) bdl bdl bdl bdl bdl
Hydroxyacetone (C3H6O2) bdl bdl bdl bdl bdl
Phenol (C6H5OH) 0.449 0.583 0.117 0.258 0.283 (0.235)
1,3-Butadiene (C4H6) 0.809 1.47 0.194 0.399 0.501 (0.435)
Isoprene (C5H8) 1.55×10−2 7.20×10−2 1.93×10−2 2.30×10−2 1.74×10−2

(2.69×10−3)
Ammonia (NH3) 9.27×10−3 6.42×10−2 1.32×10−3 1.32×10−3 5.29×10−3

(5.62×10−3)
Hydrogen cyanide (HCN) 0.188 0.458 4.77×10−2 0.282 0.118 (0.099)
Nitrous acid (HONO) 0.348 0.307 0.346 0.373 0.347 (0.001)
Sulfur dioxide (SO2) bdl bdl bdl bdl bdl
Hydrogen fluoride (HF) bdl bdl bdl bdl bdl
Hydrogen chloride (HCl) bdl bdl bdl bdl bdl
Nitric oxide (NO) 5.31 5.09 15.9 15.7 10.6 (7.5)
Nitrogen dioxide (NO2) 2.19 1.86 1.20 1.15 1.69 (0.70)
EF black carbon (BC) 6.13 – 5.31 – 5.72 (0.58)
EF Babs 405 nm (m2 kg−1) 62.4 – 54.1 – 58.3 (5.9)
EF Bscat 405 nm (m2 kg−1) 62.9 – 24.0 – 43.4 (27.5)
SSA 405 nm 0.502 – 0.307 – 0.405 (0.137)

Note: “bdl” indicates below the detection limit; C fraction: 0.85 – source is Kirchstetter et al. (1999).

3.5 Garbage burning emissions

For an overview of our Nepal garbage burning (GB) data
that also allows us to compare to authentic field- and lab-
measured GB, we tabulated (Table S7) our study-average
Nepal mixed GB EFs along with mixed GB EFs from two
lab studies (Yokelson et al., 2013; Stockwell et al., 2015),
field measurements of open GB in Mexican landfills (Chris-
tian et al., 2010), and a single airborne sample of a Mexi-
can dump fire (Yokelson et al., 2011). Figure 2 displays the
major emissions from these studies in order of their abun-
dance in the NAMaSTE data. We observe an interesting
mix of compounds usually associated with burning biomass
(OVOCs) and fossil fuels (NMHC and BTEX) as well as ni-
trogen and chlorine compounds. Even though the method-
ology and locales varied considerably, the EFs reported in

each study show reasonable agreement for most overlap com-
pounds (Fig. 2). The average EFs of smoldering compounds
for mixed-garbage burns in Nepal were generally slightly
higher than the other studies and the average MCE was lower
(0.923, range in MCE 0.864–0.980). This is consistent with
observations by several coauthors that flaming-dominated
GB is more common in winter months in Nepal when GB
also provides heat. The comparison also suggests that the
lab results for compounds not measured in the field (e.g.,
Yokelson et al., 2013; Stockwell et al., 2015) could be used if
scaled with caution. The NAMaSTE-specific EFs for garbage
burning are reported for each fire in Table 3 along with our
study average for mixed GB EFs, and we discuss some emis-
sions next.

The laboratory mixed-garbage burning experiments dur-
ing FLAME-4 were the first to yield a glycolaldehyde EF
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Figure 2. Garbage burning emission factors (g kg−1) compiled for laboratory measurements (Yokelson et al., 2013; Stockwell et al., 2015)
(green, black), field measurements of open burning in Mexican landfills (Christian et al., 2010) (blue), a single airborne measurement from
a Mexican dump fire (Yokelson et al., 2011) (purple), and our current study of mixed garbage (red). Error bars indicate 1 standard deviation
of the EF for each study where available.

(0.658 g kg−1) for trash burning. Our 14 April fire burning
“mostly plastics” in Nepal produced a very high glycolalde-
hyde EF (4.56 g kg−1). In both cases, the actual glycolalde-
hyde source is probably paper products, since glycolaldehyde
is a product of cellulose pyrolysis (Richards, 1987). Glyco-
laldehyde in our first Nepal segregated plastics burn likely
resulted from newspaper used as kindling for ignition. This
burn also had high EFs for a few other OVOCs, especially
formic and acetic acid and formaldehyde (5.30, 2.22, and
5.23 g kg−1). The high EFs in this study indicate that garbage
burning may be an important source of these aldehydes and
acids. Co-firing paper with plastics is also the likely reason
our 14 April mostly plastics simulation burned at a signifi-
cantly lower MCE than the pure plastic shopping bags that
were burned during the FLAME-4 campaign. Most garbage
is a more complex mixture than just paper and plastic, so
our average EFs for garbage burning in Nepal in Table 3
are based on only the results from sampling mixed-garbage
burns.

NMHCs were major emissions with ethylene and acety-
lene always important for both the mixed-garbage and the
mostly plastic burns. Interestingly, benzene (a carcinogen)
was just below ethylene as the most abundant NMHC in
mixed-garbage burning emissions overall (Fig. 2). Estimates
of waste burning by country for all countries are presented in
Wiedinmyer et al. (2014). For Nepal, the estimated amount
of waste burned is 644 Gg per year. Based on our average
benzene EF for garbage burning (2.61± 1.85 g kg−1), we es-
timate that trash burning in Nepal produces ∼ 1.68 Gg ben-
zene (range 0.490–2.87 Gg) annually. The central estimate of
Wiedinmyer et al. (2014) is 0.580 Gg yr−1 of benzene emit-

ted from Nepali garbage burning; at the lower end of our
range but only 34 % of our mean.

As observed in Fig. 2, EF HCl varies significantly be-
tween experiments and within the same study. Yokelson et
al. (2013) reported a lab-measured EF HCl of 10.1 g kg−1,
whereas Stockwell et al. (2014) reported their highest lab-
measured EF HCl at 1.52 g kg−1. These values are close to
the upper and lower end of EF HCl for authentic Mexi-
can landfill fires (1.65–9.8 g kg−1) (Christian et al., 2010).
HCl fell below the detection limit in some FTIR grab sam-
ples collected during NAMaSTE, indicating that GB emis-
sions can differ depending on which components are burn-
ing during a particular grab sample. Our 14 April burn with
fuels that were mostly plastics had extremely high EF HCl
(77.9 g kg−1), suggesting that many of the bags burned were
made from polyvinyl chloride (PVC). Our average EF for
HCl for mixed GB was 2.32± 1.01, well within the range
for Mexican GB. The other major halogenated emission de-
tected from mixed GB was chloromethane (by WAS) at an
EF up to 1.59 g kg−1 (average 0.702± 0.648 g kg−1).

HCN is considered useful as a biomass burning tracer
(Li et al., 2000) but was emitted by the mixed-garbage and
mostly plastic burns with an EF HCN that is similar to BB.
We did not collect data in Nepal for acetonitrile, which is
also used as a BB tracer, but the high CH3CN /HCN ratios
in Stockwell et al. (2015) for laboratory garbage burning sug-
gest a similar issue may occur. This should be factored into
any source apportionment based on using these compounds
as tracers in regions where the emission sources include BB
and either or both of garbage burning and motorcycles (e.g.,
Sect. 3.2).
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Carbonyl sulfide (OCS) is emitted by natural (oceans, vol-
canoes, etc.), BB, and anthropogenic (automobiles, fossil
fuel combustion) sources (Kettle et al., 2002). Two of our
mixed-garbage burns had high EF OCS (> 0.1 g kg−1), and
these are the first measurements reporting an EF OCS for
GB. Burns 1 and 5 (Table 3) both had high OCS and both
had a higher percentage of food waste. Because OCS is rel-
atively inert in the troposphere, it freely transports into the
stratosphere where it photodissociates and oxidizes and can
ultimately contribute to particle mass. The other S species we
could measure remained low such as dimethyl sulfide (DMS)
or below detection (SO2).

The global garbage burning inventory of Wiedinmyer et
al. (2014) had to rely on the EF BC (actually a filter-based
EC (elemental carbon) measurement) from just one study
(0.65 g kg−1, Christian et al., 2010). Both PAXs were op-
erational during one mixed-garbage burn, and we measured
an EF BC of 6.04 g kg−1 (with an AAE∼ 1) almost 10
times larger than the previously measured EF for BC, sug-
gesting a strongly BC-dominated aerosol. In addition, we
can estimate an upper limit for EF BC for some of the
other trash fires by assuming all 405 nm absorption is due
to BC while the 870 PAX was not operational. This pro-
vides our 405-estimated values in Table 3 and they range
from ∼ 0.561 to 1.69 g kg−1. Thus, our EF of 6.04 g kg−1 is
likely a high-end value from a flaming-dominated garbage
fire (MCE 0.980), while our lower values come from fires
with more smoldering (MCE ∼ 0.96) that are probably more
common. Overall our PAX data suggests an upward revision
for the literature-average garbage-burning EF BC to some-
thing above 1 g kg−1. However, with only one robust PAX-
based EF BC determination, we will rely on the detailed
EC and OC (organic carbon) particulate analysis from NA-
MaSTE to better characterize this source in Jayarathne et
al. (2016).

3.6 Cooking-fire emissions

There were two main goals of our cooking-fire measure-
ments. One was to increase the amount of chemically and
optically detailed trace gas and aerosol information that has
been quantified in the field to allow more comprehensive as-
sessments of the atmospheric and health impacts. The sec-
ond was to obtain this type of detailed information for cook-
ing fires that represent the most common global practice
(open hardwood-fuel cooking fires); a major undersampled
regional cooking practice (dung-fueled cooking fires); and,
in exploratory fashion, a diverse range of stove–fuel combi-
nations being considered as mitigation strategies.

First, we illustrate the range of cooking technologies that
we sampled and support some basic observations by plotting
the MCE of all the stove–fuel combinations that we tested in
decreasing order in Fig. 3. Several things stand out. Firstly,
the biogas, the bhuse chulo sawdust, and biobriquette-fueled
stoves had the highest MCE in our (limited) testing out of the

www.atmos-chem-phys.net/16/11043/2016/ Atmos. Chem. Phys., 16, 11043–11081, 2016
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Figure 3. The modified combustion efficiency (MCE) shown in descending order for each cookstove–fuel combination measured in this
study. The stove type is listed followed by the main fuel constituents and an indication whether the source was a lab or field measurement.
Note: “hw” indicates hardwood fuels; “d” indicates dung; “cc” indicates charcoal; “t” indicates twigs; and “sd” indicates sawdust.

wide range of possibilities and generally had smaller gas-
phase EFs. The two measurements for biogas varied sub-
stantially and the differences could be a gas leak through
the supply line and/or lingering BB emissions present in the
laboratory room; thus, we favor the field values. Biogas has
proven to be a viable alternative to traditional wood sources
especially in rural Nepal, where agriculture and animal hus-
bandry are the main sources of income (Katuwal and Bo-
hara, 2009); however, biogas stoves remain unaffordable for
poorer households. The higher MCEs in our emissions sur-
vey study suggest that more extensive testing of biogas or
the bhuse chulo could be warranted. The complete individ-
ual emissions for all stoves and fuels measured during NA-
MaSTE are included in Supplement Table S8. Another ap-
parent feature of Fig. 3 is the sharp drop off in MCE for
the tests on the right side of the figure, which were mostly
field measurements as opposed to the generally higher MCE
in lab measurements. This suggests that “lower” MCE near
0.92 for wood and 0.90 for dung are apparently representa-
tive of real-world use. More field tests were planned but were
not completed due to the earthquake. However, lower stove
MCE in the field compared to lab testing has been reported
previously (Bertschi et al., 2003; Roden et al., 2008; Stock-
well et al., 2014), and the literature-average MCE for field
use is close to 0.92 (Akagi et al., 2011). Thus, we are fairly
confident in adjusting the lab data for open cooking to re-
flect lower efficiency in order to use the lab tests to augment
the field data. The straightforward adjustment procedure is
described next.

A frequently measured smoldering compound (e.g., CO
or CH4) can be used as a reference for other smoldering

compounds, and CO2 is a good reference for other flaming
compounds. Similar to previous work (e.g., Yokelson et al.,
2008, 2013; Stockwell et al., 2014, 2015), we obtained field
representative values from the lab data by multiplying the
lab ER to CH4 (measured by FTIR or WAS) for smolder-
ing compounds and the lab ER to CO2 (measured by FTIR
or WAS) for flaming compounds by the field EF for CH4
and CO2, respectively. Our full original NAMaSTE data are
in Table S8, and the adjusted laboratory data for gases for
traditional open hardwood and dung cooking fires were av-
eraged together with our authentic field values to estimate
our NAMaSTE-average EF for open wood and dung cook-
ing fires. Those estimates along with values from a few other
studies that reported a reasonably large number of EFs for
cooking fires burning wood and dung are shown in Table 4
and form the basis for much of the ensuing discussion.

We focus next on dung cooking fires, which are prevalent
in South Asia. To our knowledge, there are very few studies
that report any EFs for dung burning (Akagi et al., 2011),
and this work significantly expands the gas-phase emissions
data. The NAMaSTE-derived dung cooking-fire average in
Table 4 includes four traditional dung cooking fires (one-pot
mud stoves and three-stone) and an open fire intended to rep-
resent an authentic open warming fire outside a rural home.
The open warming fire had a lower MCE (0.876) than our
two field dung cooking fires (0.910± 0.003) that was slightly
closer to the low MCE (0.839) average value reported in Ak-
agi et al. (2011) based on open pasture burning of dung in
Brazil (Christian et al., 2007) and laboratory burns of Indian
dung (Keene et al., 2006).
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Table 4. Compiled emission factors (g kg−1) and 1 standard deviation for open traditional cooking fires using dung and wood fuels. The
NAMaSTE values include field measurements and adjusted laboratory measurements.

Compound (formula) EF hardwood cooking EF dung cooking EF wood open cooking EF wood open cooking EF dung burning
NAMaSTE avg NAMaSTE avg Akagi et al. (2011) Stockwell et al. (2015) Akagi et al. (2011)

(SD)a (SD) avg (SD) avg (SD)b avg (SD)

MCE 0.923 0.898 0.927 0.927 0.839
PM – – 6.73 (1.61) – 22.9
Carbon dioxide (CO2) 1462 (16) 1129 (80) 1548 (125) 1548 (125) 859 (15)
Carbon monoxide (CO) 77.2 (13.5) 80.9 (13.8) 77.4 (26.2) 77.4 (26) 105 (10)
Methane (CH4) 5.16 (1.39) 6.65 (0.46) 4.86 (2.73) 4.86 (0.20) 11.0 (3.3)
Acetylene (C2H2) 0.764 (0.363) 0.593 (0.443) 0.970 (0.503) 0.602 (0.361) nm
Ethylene (C2H4) 2.70 (1.17) 4.23 (1.39) 1.53 (0.66) 2.21 (1.40) 1.12 (0.23)
Propylene (C3H6) 0.576 (0.195) 1.47 (0.58) 0.565 (0.338) 0.317 (0.145) 1.89 (0.42)
Formaldehyde (HCHO) 1.94 (0.75) 2.42 (1.40) 2.08 (0.86) 1.70 (0.74) nm
Methanol (CH3OH) 1.92 (0.61) 2.38 (0.90) 2.26 (1.27) 2.05 (1.63) 4.14 (0.88)
Formic acid (HCOOH) 0.179 (0.071) 0.341 (0.308) 0.220 (0.168) 0.620 (0.533) 0.460 (0.308)
Acetic acid (CH3COOH) 3.14 (1.11) 7.32 (6.59) 4.97 (3.32) 8.90 (9.27) 11.7 (5.1)
Glycolaldehyde (C2H4O2) 0.238 (0.155) 0.499 (0.260) 1.42 (–) 0.455 (0.149) nm
Furan (C4H4O) 0.241 (0.024) 0.534 (0.209) 0.400 (–) 0.228 (0.162) 0.950 (0.220)
Hydroxyacetone (C3H6O2) 1.26 (0.09) 3.19 (2.24) nm 0.480 (0.367) 9.60 (2.38)
Phenol (C6H5OH) 0.496 (0.159) 1.008 (0.348) 3.32 (–) 0.264 (0.085) 2.16 (0.36)
1,3-Butadiene (C4H6) 0.204 (0.144) 0.409 (0.306) nm 3.37×10−2 (9.67×10−3) nm
Isoprene (C5H8) 4.16×10−2 (2.23×10−2) 0.325 (0.443) nm 0.145 (0.077) nm
Ammonia (NH3) 0.259 (0.253) 3.00 (1.33) 0.865 (0.404) 7.88×10−2 (6.90×10−2) 4.75 (1.00)
Hydrogen cyanide (HCN) 0.557 (0.247) 2.01 (1.25) nm 0.221 (0.005) 0.530 (0.300)
Nitrous acid (HONO) 0.452 (0.068) 0.276 (0.101) nm 0.291 (0.169) nm
Sulfur dioxide (SO2) bdl bdl nm 0.499 6.00×10−2 (–)
Hydrogen fluoride (HF) bdl bdl nm bdl nm
Hydrogen chloride (HCl) 7.51×10−2 (7.99×10−2) 3.76×10−2 (3.59×10−2) nm bdl nm
Nitric oxide (NO) 1.62 (1.30) 2.22 (1.02) 1.72 (0.75) 0.319 (0.089) 0.500
Nitrogen dioxide (NO2) 0.577 (0.348) 0.898 (0.444) 0.490 (0.330) 1.11 (0.28) nm
Carbonyl sulfide (OCS) 1.87×10−2 (1.15×10−2) 0.148 (0.123) nm nm nm
DMS (C2H6S) 0.255 (0.359) 2.37×10−2 (7.67×10−4) nm nm nm
Chloromethane (CH3Cl) 2.36×10−2 (1.62×10−2) 1.60 (1.53) nm nm nm
Bromomethane (CH3Br) 5.61×10−4(3.01×10−4) 5.34×10−3 (3.02×10−3) nm nm nm
Methyl iodide (CH3I) 1.23×10−4(1.11×10−4) 4.39×10−4(1.78×10−4) nm nm nm
1,2-Dichloroethene (C2H2Cl2) 1.24×10−4(3.00E-5) 4.97×10−3 (–) nm nm nm
Methyl nitrate (CH3NO3) 6.96×10−3 (5.73×10−3) 1.46×10−2 (1.94×10−2) nm nm nm
Ethane (C2H6) 0.160 (0.122) 1.075 (0.300) 1.50 (0.50) nm nm
Propane (C3H8) 0.202 (0.140) 0.457 (0.137) nm nm nm
i-Butane (C4H10) 0.406 (0.478) 0.215 (0.126) nm nm nm
n-Butane (C4H10) 1.11 (1.48) 0.29 (0.09) nm nm nm
1-Butene (C4H8) 0.726 (0.904) 0.399 (0.331) nm 0.245 (0.148) nm
i-Butene (C4H8) 0.846 (1.113) 0.281 (0.091) nm nm nm
trans-2-Butene (C4H8) 6.78×10−2 (5.98×10−2) 0.151 (0.010) nm nm nm
cis-2-Butene (C4H8) 5.51×10−2 (4.76×10−2) 0.102 (0.016) nm nm nm
i-Pentane (C5H12) 8.58×10−2 (1.58×10−2) 0.811 (0.387) nm nm nm
n-Pentane (C5H12) 2.18×10−2 (1.73×10−2) 0.190 (0.254) nm nm nm
1-Pentene (C5H10) 1.43×10−2 (9.36×10−3) 0.168(0.086) nm nm nm
trans-2-Pentene (C5H10) 1.05×10−2 (8.30×10−3) 0.115 (0.035) nm nm nm
cis-2-Pentene (C5H10) 8.69×10−3 (–) 5.14×10−2 (7.55×10−3) nm nm nm
3-Methyl-1-butene (C5H10) 7.43×10−3 (5.79×10−3) 5.58×10−2 (3.50×10−2) nm nm nm
1,2-Propadiene (C3H4) 2.33×10−2 (1.07×10−2) 7.15×10−2 (6.76×10−2) nm nm nm
Propyne (C3H4) 6.39×10−2 (3.07×10−2) 0.172 (0.156) nm nm nm
1-Butyne (C4H6) 1.28×10−2 (4.73×10−3) 2.29×10−2 (1.38×10−2) nm nm nm
2-Butyne (C4H6) 1.02×10−2 (6.56×10−3) 1.86×10−2 (9.11×10−3) nm nm nm
n-Hexane (C6H14) 1.85×10−2 (–) 0.291 (0.248) nm nm nm
n-Heptane (C7H16) 1.01×10−2 (1.35×10−2) 0.114 (0.069) nm nm nm
n-Octane (C8H18) 1.75×10−2 (–) 4.77×10−2 (9.85×10−3) nm nm nm
n-Nonane (C9H20) 4.87×10−2 (6.40×10−2) 4.68×10−2 (2.55×10−2) nm nm nm
n-Decane (C10H22) 6.90×10−2 (9.61×10−2) 4.71×10−2 (4.03×10−2) nm nm nm
2,3-Dimethylbutane (C6H14) 1.57×10−2 (1.16×10−2) 0.112 (0.105) nm nm nm
2-Methylpentane (C6H14) 9.93×10−3 (1.29×10−2) 0.231 (0.192) nm nm nm
3-Methylpentane (C6H14) 6.79×10−3 (6.63×10−3) 0.155 (0.137) nm nm nm
2,2,4-Trimethylpentane (C8H18) – (–) 0.100 (0.080) nm nm nm
Cyclopentane (C5H10) 4.06×10−3 (–) 0.146 (0.178) nm nm nm
Cyclohexane (C6H12) 1.16×10−2 (–) 0.224 (0.255) nm nm nm
Methylcyclohexane (C7H14) 1.62×10−2 (–) 4.76×10−2 (3.96×10−2) nm nm nm
Benzene (C6H6) 1.05 (0.19) 1.96 (0.45) nm 2.58 (2.68) nm
Toluene (C7H8) 0.241 (0.160) 1.26 (0.05) nm 0.290 (0.311) nm
Ethylbenzene (C8H10) 4.19×10−2 (4.25×10−2) 0.366 (0.085) nm nm nm
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Table 4. Continued.

Compound (formula) EF hardwood cooking EF dung cooking EF wood open cooking EF wood open cooking EF dung burning
NAMaSTE avg NAMaSTE avg Akagi et al. (2011) Stockwell et al. (2015) Akagi et al. (2011)

(SD)a (SD) avg (SD) avg (SD)b avg (SD)

m/p-Xylene (C8H10) 9.57×10−2 (7.99×10−2) 0.601 (0.294) nm 0.265 (0.380) nm
o-Xylene (C8H10) 3.93×10−2 (4.31×10−2) 0.228 (0.083) nm nm nm
Styrene (C8H8) 8.71×10−2 (6.69×10−2) 0.255 (0.091) nm 0.234 (0.306) nm
i-Propylbenzene (C9H12) 1.70×10−2 (1.67×10−2) 1.87×10−2 (1.40×10−2) nm nm nm
n-Propylbenzene (C9H12) 1.78×10−2 (1.58×10−2) 3.10×10−2 (1.45×10−2) nm nm nm
3-Ethyltoluene (C9H12) 2.62×10−2 (5.41×10−3) 5.61×10−2 (2.38×10−2) nm nm nm
4-Ethyltoluene (C9H12) 2.07×10−2 (1.19×10−2) 3.57×10−2 (1.74×10−2) nm nm nm
2-Ethyltoluene (C9H12) 2.10×10−2 (1.16×10−2) 3.39×10−2 (1.34×10−2) nm nm nm
1,3,5-Trimethylbenzene (C9H12) 2.14×10−2 (–) 1.79×10−2 (8.32×10−3) nm 7.01×10−2 (9.27×10−2) nm
1,2,4-Trimethylbenzene (C9H12) 1.74×10−2 (2.35×10−2) 3.91×10−2 (1.65×10−2) nm nm nm
1,2,3-Trimethylbenzene (C9H12) 2.16×10−2 (–) 2.34×10−2 (4.30×10−3) nm nm nm
alpha-Pinene (C10H16) 2.02×10−2 (2.33×10−2) 0.348 (0.487)c nm 0.197 (0.257) nm
beta-Pinene (C10H16) 4.67×10−2 (–) 0.471 (–)c nm nm nm
Ethanol (C2H6O) 0.128 (0.017) 0.563 (0.589) nm nm nm
Acetaldehyde (C2H4O) 0.541 (0.362) 1.88 (1.63) nm 0.792 (0.439) nm
Acetone (C3H6O) 0.524 (0.256) 1.63 (0.38) nm nm nm
Butanal (C4H8O) 8.28×10−3 (6.27×10−3) 5.40×10−2 (2.19×10−2) nm nm nm
Butanone (C4H8O) 0.232 (0.286) 0.262 (0.109) nm 8.04×10−2 (4.98×10−2) nm
EF black carbon (BC) 0.221 (0.127) 4.15×10−2 (3.18×10−2) 0.833 (0.453) nm nm
EF brown carbon (BrC) 8.59 (5.62) 5.54 (1.66) nm nm nm
EF Babs 405 (m2 kg−1) 10.6 (6.8) 5.85 (1.95) nm nm nm
EF Bscat 405 (m2 kg−1) 40.4 (23.8) 49.5 (5.8) nm nm nm
EF Babs 870 (m2 kg−1) 1.04 (0.60) 0.197 (0.151) nm nm nm
EF Bscat 870 (m2 kg−1) 1.51 (0.52) 0.922 (0.324) nm nm nm
EF Babs 405 just BrC (m2 kg−1) 8.40 (5.48) 5.43 (1.62) nm nm nm
EF Babs 405 just BC (m2 kg−1) 2.24 (1.28) 0.423 (0.324) nm nm nm
SSA 405 nm 0.605 (0.061) 0.811 (0.164) nm nm nm
SSA 870 nm 0.794 (0.009) 0.893 (0.043) nm nm nm
AAE 3.01 (0.10) 4.63 (0.68) nm nm nm

Note: “bdl” indicates below the detection limit; “–” indicates concentrations were not greater than background; “nm” indicates not measured. a NAMaSTE gas-phase data include adjusted laboratory and unadjusted field
values. Aerosol values include field measurements only (see Sect. 3.6). b This includes laboratory adjusted values (see Stockwell et al., 2014, 2015); additional gas-phase compounds are reported therein. c High monoterpene
values likely due to wood kindling.

As shown for dung-fuel cooking fires in Table 4, our
EFs for CH4 (6.65± 0.46 g kg−1) are lower than the liter-
ature average reported in Akagi et al. (2011) (11 g kg−1),
although both are within the range (3–18 g kg−1) reported
by Smith et al. (2000) for simulated rural cooking in In-
dia. OVOCs were major emissions, and we provide the first
EFs for many OVOCs (e.g., formaldehyde, acetone, glyco-
laldehyde, acetaldehyde). Acetic acid and hydroxyacetone
were the most abundant OVOCs, though the Nepal EFs (7.32
and 3.19 g kg−1) are lower than the Brazil EFs (14.3 and
9.6 g kg−1) reported by Christian et al. (2007) at a lower
MCE. This work considerably expands our knowledge of
NMHCs from this source and reports a much higher EF
for C2H4 (4.23 g kg−1) and also many previously unob-
served NMHCs at high levels. In particular, our new NMHC
data include high emissions for BTEX compounds, espe-
cially benzene and toluene (1.96, 1.26 g kg−1). Other notable
compounds with high emissions that were previously un-
observed include chloromethane (1.60 g kg−1) and carbonyl
sulfide (0.148 g kg−1). This is consistent with the elevated Cl
and S content in the dung sample from Montana (0.19 % S,
0.05 % Cl; Table S3). Chloromethane is the main form of or-
ganic chlorine in the atmosphere (Lobert et al., 1999) and is
discussed more below.

As expected, the high N content of dung (1.9 %, Table S3)
led to high emissions for N-containing gases including NH3
(3 g kg−1), NOx (∼ 3 g kg−1), and HCN (∼ 2 g kg−1). Our
NOx EF is higher than previously reported and this is an
EPA-regulated criteria pollutant that is an important precur-
sor to ozone, acid rain, and nitrate aerosols. The high NH3
(3.00± 1.33 g kg−1) and acetic acid (7.32± 6.59 g kg−1)
emissions we observed, also previously observed in Brazil
dung-fire emissions, might lead to ammonium acetate in sec-
ondary aerosol. Laboratory measurements during FLAME-4
were the first to report HCN from wood cooking fires (Stock-
well et al., 2014), though the ERs to CO were about 5 times
lower than what is typically observed for other BB fuels. The
NAMaSTE real-world wood cooking fires had higher HCN
EFs (0.557± 0.247 g kg−1) than in the lab (0.221 g kg−1);
however, our HCN-to-CO ratio for dung burning is 3.5 times
higher than for wood. Despite the lower ER for wood, its
dominance as a fuel means both should be considered an
important source of HCN in the atmosphere. The cooking
source continues during the monsoon, when open burning is
reduced, and likely contributes to the large HCN anomaly ob-
served by satellite in the anticyclone over the Asian monsoon
(Park et al., 2008; Randel et al., 2010; Glatthor et al., 2015).
The NAMaSTE 1HCN /1CO ratios should be considered
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when using HCN in any source apportionment of pollution
sources in areas subject to biomass burning and dung cook-
ing along with the motorcycles and garbage burning men-
tioned above.

Yevich and Logan (2003) estimated annual Asian use of
dung as a biofuel in 1985 at 123 (±50 %) Tg, with India
accounting for 93 Tg. The NAMaSTE field measurements
of dung burning were conducted in the Tarai region, which
makes up the southern part of Nepal and likely represents
similar cooking conditions to those in northern India. Fer-
nandes et al. (2007) estimated that only 75 Tg yr−1 of dung
is burned globally, while Yevich and Logan (2003) estimated
a slightly higher global value (136 Tg). If we take the av-
erage of these two studies as an estimate of dung biofuel
use (106 Tg), then we estimate from our EFs that 0.78 Tg
acetic acid, 0.21 Tg HCN, and 0.17 Tg CH3Cl are emitted
from dung burning each year. This accounts for∼ 33, 51, and
over 100 % of the previously estimated total biofuel burn-
ing emissions for these species in the late 1990s (Andreae
and Merlet, 2001). Our estimate of HCN emitted solely from
burning dung accounts for ∼ 4–8 % of HCN thought to be
emitted by total BB annually in earlier work (Li et al., 2000).
Our estimate of CH3Cl emitted by dung burning alone is
∼ 18 % of the total global CH3Cl emitted by BB in the in-
ventory of Lobert et al. (1999). They also cited a high Cl
content of dung (4360 mg kg−1) and concluded that BB was
the largest source of CH3Cl in the atmosphere. The contribu-
tion of dung burning to acetic acid, HCN, CH3Cl, and other
species should be included in updated inventories of global
BB and biofuel emissions.

We report the first BrC emissions data from dung burning
(to our knowledge) in Table 4 based on our NAMaSTE field-
measured values only. Our EF BrC of 5.54± 1.66 g kg−1 is
qualitative but substantial, and our more rigorously measured
AAE (4.63± 0.68) is higher than our NAMaSTE value for
wood cooking (3.01± 0.10). Expressed in terms of light ab-
sorption, BrC accounted for ∼ 93 % of aerosol absorption
at 405 nm for dung burning and 79 % for wood burning. In
addition, for dung burning the BC absorption EF at 870 nm
was only 3.5 % of the “BrC-only” absorption EF at 405 nm.
Even for wood burning, the BC absorption EF at 870 nm
was just 12 % of the BrC absorption EF at 405 nm. From
these values we see that dung cooking fires are an impor-
tant BrC source in South Asia and that BrC from cooking
fires in general is of great importance for understanding their
climate impacts. Our EF BC (0.04 g kg−1) for dung is lower
than the suggested EF reported in Venkataraman et al. (2005)
(0.12 g kg−1) for lab-burned cattle dung, though it is within
the low end of the range estimated by Xiao et al. (2015)
(0.03–0.3 g kg−1) for dung cooking fires. The sum of our BC
and BrC emissions (∼ 5.5 g kg−1) is significantly lower than
total carbon (EC+OC, 22 g kg−1) reported for lab measure-
ments of dung cooking fires in Keene et al. (2006), but the
methods used are difficult to compare. Both studies highlight
the need for more measurements of this source. The SSA

for dung cooking fires is statistically higher at both wave-
lengths than for wood cooking, but both sources produced
fresh smoke with SSA < 0.9, indicating it would (initially)
warm the atmosphere and cool the surface, impacting climate
(Praveen et al., 2012). Our values of EF Babs, EF Bscat, AAE,
and SSA at 405 and 870 nm shown in Table 4 for dung and
wood burning are independent of MAC estimates and can
be used in models directly to estimate the optical properties,
forcing, etc.

Open cooking fires using hardwood fuel are the most
common cooking technology globally. Our NAMaSTE mea-
surements significantly increase the number of gases that
have been measured in hardwood open cooking-fire emis-
sions in the field. We report a few new OVOCs with high
EF such as acetone (0.524 g kg−1) and many new EFs for
NMHCs (Table 4). The NAMaSTE results include lower
emissions of total BTEX compounds from wood cooking
fires (∼ 1.5 g kg−1) than dung cooking fires (∼ 4.5 g kg−1)
but confirm the high EF for these species previously reported
in lab studies (∼ 3.2 g kg−1, Stockwell et al., 2015). DMS
emissions have not been reported previously for open cook-
ing with wood, and our EF is relatively high (0.255 g kg−1)
for a BB source (Simpson et al., 2011). Rather than walk the
reader through all the data in Table 4, we reiterate the main
result, which is that models can now use much improved spe-
ciation of the trace gases emitted by cooking fires. This can
be seen by comparing columns 2 and 4 (the literature aver-
age) in Table 4. The agreement is good for most species pre-
viously measured in the field. For example, the NAMaSTE-
average MCE (0.923) is very close to the Akagi et al. (2011)
field average MCE (0.927). In addition, NAMaSTE provides
data in column 2 for about 70 gases not previously measured
in field work to our knowledge.

The numerous trace gas EFs we measured for open-
hardwood cooking fires in Nepal also present an important
validation opportunity for cooking-fire trace gas measure-
ments made on simulated cooking fires in a lab study that fea-
tured many advanced instruments mostly never deployed on
field cooking fires. In FLAME-4, the lab cooking-fire EFs for
trace gases were adjusted to the field average MCE (0.927)
and reported in Table S3 of Stockwell et al. (2015). In Ta-
ble 4 we show the overlap species between NAMaSTE and
FLAME-4. There are a few noticeable deviations between
the lab and NAMaSTE EF for NMOC. The lab /field EF ra-
tios are shown in parentheses for acetic acid (2.8), hydroxy-
acetone (0.38), BTEX (2), and HCN (0.40). However, com-
paring columns 2 and 5 shows agreement within 1 standard
deviation of the mean for more than 70 % of the∼ 26 overlap
species. Fuel S and N content differences may explain the EF
differences for SO2 and NOx . In general the agreement sug-
gests the FLAME-4 trace gas EF are useful, especially for
the > 100 species that the study measured that were not mea-
sured in the field (Stockwell et al., 2015; Hatch et al., 2015).
The FLAME-4 and NAMaSTE data will be used to update
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the tables in Akagi et al. (2011), creating a new literature av-
erage.

As noted earlier, aerosol emissions from wood
cooking fires are a major global issue. Our EF BC
(0.221± 0.127 g kg−1) for hardwood cooking fires is signif-
icantly lower than the Akagi et al. (2011) literature average
(0.833± 0.025 g kg−1) based on EC measurements but was
within the range reported in Christian et al. (2010) (0.205–
0.674 g kg−1). Our BC and BrC combine to ∼ 9 g kg−1,
which is ∼ 40 % larger than the typical value for PM2.5
from biofuel sources (∼ 7 g kg−1, Akagi et al., 2011). To our
knowledge we report the first field-measured EF Babs and
EF Bscat for wood cooking fires at 405 and 870 nm (Table 4),
which can be used in models without MAC assumptions.
We also provide rare measurements of SSA and AAE for
fresh cooking-fire aerosol in Tables 4 and S8. Our AAE for
hardwood cooking fires (3.01± 0.10) is higher than that
which Praveen et al. (2012) measured in hardwood cooking-
fire smoke (2.2) in the IGP in northern India. More work
is required to examine how methodological differences,
aging, and sample size vs. real regional variability affect
measurements of regional averages. Our hardwood cooking
SSAs (0.794, 870 nm; 0.605, 405 nm) indicate an absorbing
fresh aerosol, but SSA has been seen to increase rapidly with
aging in BB plumes (Abel et al., 2003; Yokelson et al., 2009;
Akagi et al., 2012). In summary, our PAX data from Nepal
increase the total amount of sampling and approaches used
to estimate regional average cooking-fire aerosol properties.
Incorporating our data would nudge the regional average for
hardwood cooking fires towards higher BrC /BC ratios, and
we show that dung cooking fires are also an important BrC
source. Additional NAMaSTE aerosol data will be reported
in companion papers (Jayarathne et al., 2016; Goetz et al.,
2016).

Health impacts of indoor cooking-fire emissions are a ma-
jor global concern (e.g., Davidson et al., 1986, and Fullerton
et al., 2008). We did not target exposure assessment in NA-
MaSTE, but our data can be used in a piggyback approach
with studies focused on longer-term exposure to a key in-
door air pollutant to estimate exposure to other air toxic gases
not measured in those exposure studies following Akagi et
al. (2014). We give one example. Based on our measurements
it is possible to extrapolate concentrations of trace species
not measured in previous studies. For example, assuming
similar emission profiles, we can scale indoor CO measured
by Davidson et al. (1986) to estimate indoor benzene concen-
trations and exposures. In their study indoor concentrations
of CO were 21 ppm, which would equate to 183 ppb ben-
zene using the ER (benzene /CO) from our study for dung
cooking. The same approach can be extended to any of the
gases we measured for any of the stove and fuel types. Over-
all, we were able to survey a very large variety of cooking
technologies, practices, and fuel options representative of a
diverse region and to identify candidate technologies for fur-
ther testing and possible wider use. The large amount of new

gas and aerosol data from NAMaSTE as a whole should im-
prove model representation and help to better understand the
local and regional climate, chemistry, and health impacts of
domestic and industrial biofuel use.

3.7 Crop residue fire emissions

We present the first detailed measurements of trace gas chem-
istry and aerosol properties for burning authentic Nepali crop
residues, and we also significantly expand the field emissions
characterization for global agricultural residue fires. The EFs
for each fire are compiled in Supplement Table S9. We ex-
amine the representativeness of our trace gas grab sampling,
justify a small adjustment to the trace gas data, and then dis-
cuss the implications of the trace gas and aerosol results.

A detailed suite of EFs for several crop residues commonly
burned in the US and globally that is based on continuous
lab measurements over the course of whole fires is reported
in Stockwell et al. (2014, 2015). A few fuels they measured
overlap with our Nepal study, including wheat and rice straw.
The average MCE (0.954) for our Nepal grab samples burn-
ing wheat varieties is very close to the lab-measured wheat
straw burning MCE (0.956), though other crop types do not
compare as well. When we compare our Nepal-average MCE
for all our crop residue fire grab samples (0.952) to earlier
field measurements, we find that the MCEs reported in Mex-
ico (0.925) by Yokelson et al. (2011) and in the US (0.930)
by Liu et al. (2016) are significantly lower. In addition, the
previous field studies obtained more grab samples of a larger
number of fires and sampled from the air, which is unlikely to
return too low an MCE. The MCE that we obtained from the
real-time FTIR CO and CO2 measurements that supported
filter collection was also lower (e.g., ∼ 0.933) and closer to
the abovementioned field MCE values. Thus, we believe our
Nepal-average MCE based on grab samples is likely biased
upwards. Thus, to make our Nepal EFs more representative
of the likely Nepal (and regional) average, we have adjusted
it to the average airborne-measured field MCE (0.925) ob-
served for crop residue burning in another developing coun-
try (Mexico) according to procedures similar to Stockwell et
al. (2014) and also described in Sect. 3.6 above. These ad-
justed EFs for selected compounds are included in Table 5
along with values from selected other previous studies. Ad-
ditional compounds measured in this study (both original and
adjusted) are included in Supplement Table S9.

Figure 4 shows the top OVOCs, NMHCs, and S- or N-
containing compounds emitted and shows good agreement
with literature values for overlap species. As noted in Stock-
well et al. (2014), glycolaldehyde (the simplest “sugar-like”
molecule) is a major emission from crop residue fires and
Fig. 4 shows that glycolaldehyde is the dominant NMOC by
mass from the NAMaSTE crop residue fires. When we com-
pare them to other fuel types, the EFs of glycolaldehyde from
our study, smoldering Indonesian rice straw (Christian et al.,
2003), and an assortment of US crop residue fuels (Stock-
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Table 5. Summary of emission factors (g kg−1) and 1 standard deviation for crop residue burns from this study and others.

Compound (formula) EF crop residue EF crop residue (food fuels) EF crop residue
Yokelson et al. (2011) Stockwell et al. (2015) NAMaSTE

avg (SD)a avg (SD) avg (SD)b,c

MCE 0.925 0.925 0.925
Carbon dioxide (CO2) 1398 (55) 1353 (80) 1401 (68)
Carbon monoxide (CO) 71.9 (28.4) 68.7 (25.2) 72.3 (23.9)
Methane (CH4) 4.21 (3.53) 3.49 (2.19) 2.79 (0.85)
Acetylene (C2H2) 0.193 (0.059) 0.331 (0.277) 0.216 (0.063)
Ethylene (C2H4) 0.974 (0.470) 1.34 (0.80) 0.890 (0.230)
Propylene (C3H6) 0.417 (0.224) 0.576 (0.415) 0.492 (0.094)
Formaldehyde (HCHO) 1.55 (0.78) 1.93 (1.32) 0.865 (0.298)
Methanol (CH3OH) 2.24 (1.33) 1.87 (1.53) 1.01 (0.37)
Formic acid (HCOOH) 0.840 (0.571) 0.633 (0.846) 0.119 (0.055)
Acetic acid (CH3COOH) 3.80 (2.35) 3.88 (3.64) 0.871 (0.719)
Glycolaldehyde (C2H4O2) – 2.29 (3.04) 4.07 (4.03)
Furan (C4H4O) – 0.355 (0.445) 0.116 (0.049)
Hydroxyacetone (C3H6O2) – 1.69 (2.03) 1.48 (0.62)
Phenol (C6H5OH) – 0.494 (0.480) 0.341 (0.170)
1,3-Butadiene (C4H6) 0.127 (0.060) 3.63×10−3 (4.51×10−3) 0.180 (0.068)
Isoprene (C5H8) – 0.220 (0.170) 1.97×10−2 (1.57×10−2)
Ammonia (NH3) 1.48 (1.13) 1.10 (1.05) 1.32 (1.10)
Hydrogen cyanide (HCN) 0.134 (0.252) 0.381 (0.259) 0.630 (0.463)
Nitrous acid (HONO) – 0.395 (0.221) 0.377 (0.084)
Sulfur dioxide (SO2) – 1.06 (0.36) 2.54 (1.09)
Hydrogen fluoride (HF) – – bdl
Hydrogen chloride (HCl) – 0.472 (0.320) 2.65×10−2 (–)
Nitric oxide (NO) 1.73 (0.66) 1.44 (0.42) 1.72 (0.93)
Nitrogen dioxide (NO2) 2.92 (1.77) 1.65 (0.47) 0.630 (0.203)
Ethane (C2H6) 0.764 (0.414) – 0.566 (–)
Propane (C3H8) 0.237 (0.126) – 0.186 (–)
1-Butene (C4H8) 0.113 (0.050) 0.134 (0.100) 0.119 (0.007)
Benzene (C6H6) – 0.301 (0.177) 0.379 (0.091)
Toluene (C7H8) – 0.296 (0.228) 0.224 (0.041)
Ethylbenzene (C8H10) – – 6.24×10−2 (4.05×10−3)
m/p-Xylene (C8H10) – 0.107 (0.088) 0.297 (0.319)
PM 5.26 (1.98) – –
EF black carbon (BC) – – 0.831 (0.497)
EF brown carbon (BrC) – – 10.9 (6.5)
EF Babs 405 (m2 kg−1) – – 19.2 (8.0)
EF Bscat 405 (m2 kg−1) – – 116 (80)
EF Babs 870 (m2 kg−1) – – 3.94 (2.36)
EF Bscat 870 (m2 kg−1) – – 33.1 (29.5)
EF Babs 405 just BrC (m2 kg−1) – – 10.7 (6.3)
EF Babs 405 just BC (m2 kg−1) – – 8.47 (5.06)
SSA 405 nm – – 0.818 (0.146)
SSA 870 nm – – 0.825 (0.082)
AAE – – 2.15 (0.79)

a Yokelson et al. (2011) data are adjusted to a lower carbon fraction (0.42). b NAMaSTE gas-phase EF values are adjusted to MCE 0.925 (see Sect. 3.7).
c Additional gas-phase compounds are in Table S9.

well et al., 2014) are significantly higher than from other
BB sources (Burling et al., 2011; Johnson et al., 2013; Ak-
agi et al., 2013). Glycolaldehyde was below the detection
limit for one NAMaSTE crop type (mustard residue), sug-

gesting emissions variability by fuel type and/or fuel prop-
erties. Our average glycolaldehyde EF (4.07 g kg−1

± 4.03)
is similar to typical EFs for total PM from BB, and gly-
colaldehyde has also been shown to be an efficient aque-
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Figure 4. The emission factors (g kg−1) and± 1 standard deviation
for the most abundant OVOCs, NMHCs, and S- or N-containing
compounds emitted from crop residue burns. The crop residue fires
from other studies (Yokelson et al., 2011; Stockwell et al., 2015) are
shown in red and green.

ous phase SOA precursor (Ortiz-Montalvo et al., 2012).
Other oxygenated species emitted in large amounts by
the crop residues burned in NAMaSTE include butanone
(methyl ethyl ketone) (1.93± 2.41 g kg−1) and hydroxyace-
tone (1.48± 0.62 g kg−1). The Nepal data are higher or sim-
ilar to previous data for many OVOCs but noticeably lower
for methanol, formaldehyde, and organic acids. As expected
the emissions of OVOCs were greater than NMHCs, though
there are also large emissions of C2 NMHCs and BTEX com-
pounds.

Figure 4 shows several major S- and N-containing com-
pounds including significant SO2 emissions (2.54 g kg−1).
While the SO2 emissions are large compared to most BB
types, the emissions from other S-containing compounds
(OCS, DMS) are limited. SO2 is an important precursor of
sulfate aerosols and was also a significant emission from
grasses and crop residue in Stockwell et al. (2014). This up-
date is important to include in emissions inventories as many
global and regional estimates rely on the much smaller value
(0.4 g kg−1) reported by Andreae and Merlet (2001) (Streets
et al., 2003). Yokelson et al. (2011) noted high emissions of
NOx from crop residue fires sampled near the beginning of

the Mexican dry season when plant N content may be higher.
Our Nepal NOx (∼ 2.5 g kg−1) emissions for this fire type
were measured in April, 6 months after the dry season started
in October, and may reflect lower fuel N content. The higher
NOx emissions (4.65 g kg−1) in Mexico may have also re-
flected higher wind speed as an important mechanism, but
one that requires airborne sampling to probe.

Unlike US crop residue fires (Stockwell et al., 2014),
HCl remained below the detection limit in nearly every crop
residue burn. As a landlocked country these crops are not
as influenced by chlorine-rich maritime air. Additionally, in
comparison to US crops, most rural agriculture in Nepal may
be less augmented by chemical pesticides. There are, how-
ever, detectable emissions of CH3Cl, which have not been
measured previously in the field for crop residue burning.
This new information for CH3Cl should be considered when
assessing global emissions of reactive chlorine (Lobert et al.,
1999).

The absorption and scattering coefficients at 405 and
870 nm were measured for five of the six crop residue fires.
The fire-average SSA at 870 nm and AAE for these crop
residue fires span a wide range. SSA (870) ranges from
0.579–0.981 (average 0.82 for both 870 and 405 nm), and
AAE ranges from ∼ 1.58–3.53 (average near 2). The AAE
as a function of SSA colored by MCE is shown in Fig. 5 for
all the real-time 1 s data collected during crop residue fires.
The AAE increases sharply at high SSA, while the MCE
distinctly decreases at increasing SSA. These observations
support previous interpretations that BrC is produced pri-
marily by smoldering combustion at lower MCEs for most
BB fuel types (Liu et al., 2014; McMeeking et al., 2014).
Similar trends were observed for all other fuel types ex-
cept for the zigzag brick kiln, which will be discussed in
the next section. The BC and OC literature average for crop
residue fires reported by Akagi et al. (2011) was based on
only two fires. Our average EF BC (0.831± 0.497 g kg−1)
from five crop residue fires is similar to the literature value
(0.75 g kg−1), while we report the EF for BrC for the first
time (10.9± 6.5 g kg−1), which is considerably larger than
the global average OC reported in Akagi et al. (2011) but in
good agreement with the NAMaSTE, simultaneously mea-
sured filter organic mass (∼ 10 g kg−1) (Jayarathne et al.,
2016). More importantly from an absorption standpoint, we
report EFs for Babs and Bscat at both wavelengths for this fuel
type in column 4 of Table 5.

3.8 Brick kiln emissions

Very little is known about the chemical composition of brick
kiln emissions. There are very few studies and most of what
is reported focuses on a few key pollutants including CO,
PM, and BC (Weyant et al., 2014). A previous study mea-
sured a larger suite of emissions from authentic brick kilns in
Mexico (Christian et al., 2010); however, the fuel burned in
those kilns was primarily biomass and the NMOC emissions
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Figure 5. The AAE calculated at 405 and 870 nm vs. SSA at 870 nm for all crop residue burn samples measured every second during
emissions collection. Each data point is colored by MCE. The AAE increases sharply at high SSA, while the MCE distinctly decreases
at increasing SSA. BC emissions are associated mostly with high MCE flaming and BrC emissions are associated mostly with low MCE
smoldering. Most source types demonstrated a similar trend.

were somewhat comparable to those from biomass burns.
Coal is the main fuel used in brick kilns globally and to our
knowledge NAMaSTE produced the first quantitative emis-
sions data for numerous atmospherically significant species
from authentic coal-fired brick kilns in a region heavily in-
fluenced by this source. The individual EFs for both brick
kilns sampled in this study are reported in Table 6. There are
large differences between the two kilns types that stand out
in Table 6 despite our lack of opportunity to measure inher-
ent kiln variability. We will first discuss the kiln emissions
individually and then follow with a detailed kiln comparison.

3.8.1 Zigzag emissions

The zigzag kiln emissions had a very high average MCE
(0.994), and the EFs for most smoldering compounds (e.g.,
most NMOC) were much reduced. Not surprisingly, the EFs
for flaming compounds including HCl, HF, NOx , and SO2
were high. High emissions of NOx and S-containing gases
are important as ozone and aerosol precursors and because
they can enhance deposition and O3 impacts on nearby crops
and negatively impact crop yield. The latter issue is espe-
cially relevant since brick kilns are commonly seasonal and
located on land leased from farmers, where the depletion of
the soil to collect clay for bricks is already another agricul-
tural productivity issue.

The zigzag kiln was the only source in our NAMaSTE
study that emitted detectable quantities of HF. It has been
suspected that brick kilns are an important source of atmo-
spheric fluorides since fluorine is typically present in raw
brick materials (USEPA, 1997). We found that HF was a ma-
jor emission from the zigzag brick kiln with an average EF
of 0.629 g kg−1 and a peak concentration of∼ 13 ppm. HF is

a phytotoxic air pollutant, and agricultural areas with visible
foliar damage in Pakistan were suspected to be impacted by
HF emissions from nearby brick kilns (Ahmad et al., 2012).
While HF is rapidly transformed to particulate fluoride, much
previous work confirms adverse effects of HF or particulate
fluoride from various sources on crops (Haidouti et al., 1993;
Ahmad et al., 2012). Since many brick kilns are present in
agricultural regions, this first confirmation of high HF emis-
sions is an important finding and should also be included
in assessments of kiln impacts on agriculture. HF emissions
from brick kilns likely vary considerably depending on the F
content of the clay (and possibly the coal) being fired (as dis-
cussed further below). HF is also very reactive, but perhaps
particle fluoride could serve as a regional indicator for brick
kilns with more work.

Because of the large number of FTIR grab samples over
the sampling day, which lasted approximately 5 h, we can
construct a rough time series of the kiln emissions, with reso-
lution averaging about 12 min. To emphasize chemistry, nor-
malize for fuel consumption rates, and account for some-
what arbitrary grab sample dilution, in Fig. S1 we plot se-
lected ERs to CO2. The ERs of HCl and HF to CO2 rise first
and track together over time. The ERs of NO and SO2 rise
next, and their observed peak is about 2 h after the halogens.
This is consistent with the halogens being driven from clay at
500–600 ◦C (USEPA, 1997). The halogen peaks are then fol-
lowed by a peak in the NOx and SO2 emissions likely from
the coal fuel.

As noted in Sect. 2.1.7, in hopes of obtaining represen-
tative emissions from this particular brick kiln, we sampled
the smoke coming out of the top of the chimney stack, but
we also sampled the lesser amount of emissions escaping the
coal-feeder stoke holes located on the “roof” of the kiln. Ta-
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Table 6. Emission factors (g kg−1) for a single clamp kiln, zigzag kiln, and stoke holes on the zigzag kiln.

Compound (formula) EF clamp kiln EF zigzag kiln EF coal stoke holes
at zigzag kiln

Method FTIR+WAS FTIR+WAS FTIR
MCE 0.950 0.994 0.861
Carbon dioxide (CO2) 2102 2620 2234
Carbon monoxide (CO) 70.9 10.1 230
Methane (CH4) 19.5 8.73×10−2 4.59
Acetylene (C2H2) 5.58×10−2 1.65×10−2 1.87×10−2

Ethylene (C2H4) 1.27 4.32×10−2 0.445
Propylene (C3H6) 1.49 6.58×10−2 0.808
Formaldehyde (HCHO) 8.21×10−2 bdl bdl
Methanol (CH3OH) 1.77 0.112 0.437
Formic acid (HCOOH) 0.241 5.84×10−2 0.180
Acetic acid (CH3COOH) 0.430 0.471 11.3
Glycolaldehyde (C2H4O2) bdl bdl bdl
Furan (C4H4O) 0.383 bdl bdl
Hydroxyacetone (C3H6O2) 1.81 bdl 1.61
Phenol (C6H5OH) 0.429 1.54×10−2 bdl
1,3-Butadiene (C4H6) 0.103 1.51×10−2 bdl
Isoprene (C5H8) 8.66×10−2 2.46×10−2 1.47
Ammonia (NH3) 0.317 bdl bdl
Hydrogen cyanide (HCN) 1.39 0.446 2.28
Nitrous acid (HONO) 0.320 4.45×10−2 1.33
Sulfur dioxide (SO2) 13.0 12.7 28.5
Hydrogen fluoride (HF) bdl 0.629 0.888
Hydrogen chloride (HCl) bdl 1.24 1.86
Nitric oxide (NO) bdl 1.28 10.4
Nitrogen dioxide (NO2) 0.297 8.21×10−2 1.36
Carbonyl sulfide (OCS) – 3.42×10−3 nm
DMS (C2H6S) – 3.68×10−5 nm
Chloromethane (CH3Cl) – 2.22×10−2 nm
Bromomethane (CH3Br) 2.62×10−3 2.59×10−3 nm
Methyl iodide (CH3I) bdl 2.01×10−3 nm
1,2-Dichloroethene (C2H2Cl2) – 4.45×10−5 nm
Methyl nitrate (CH3NO3) 2.36×10−5 2.92×10−3 nm
Ethane (C2H6) 5.37 2.06×10−3 nm
Propane (C3H8) 3.00 1.97×10−3 nm
i-Butane (C4H10) 0.342 1.60×10−3 nm
n-Butane (C4H10) 1.16 1.92×10−3 nm
1-Butene (C4H8) 0.347 1.68×10−3 nm
i-Butene (C4H8) 0.428 1.47×10−3 nm
trans-2-Butene (C4H8) 0.346 1.44×10−3 nm
cis-2-Butene (C4H8) 0.214 9.65×10−4 nm
i-Pentane (C5H12) 0.349 3.70×10−2 nm
n-Pentane (C5H12) 0.811 3.26×10−2 nm
1-Pentene (C5H10) 0.233 1.60×10−3 nm
trans-2-Pentene (C5H10) 0.249 2.64×10−3 nm
cis-2-Pentene (C5H10) 0.093 9.01×10−4 nm
3-Methyl-1-butene (C5H10) 5.72×10−2 3.32×10−4 nm
1,2-Propadiene (C3H4) 4.97×10−4 2.15×10−5 nm
Propyne (C3H4) 1.80×10−3 bdl nm
1-Butyne (C4H6) bdl bdl nm
2-Butyne (C4H6) bdl bdl nm
n-Hexane (C6H14) 0.670 2.16×10−2 nm
n-Heptane (C7H16) 0.617 3.04×10−3 nm
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Table 6. Continued.

Compound (formula) EF clamp kiln EF zigzag kiln EF coal stoke holes
at zigzag kiln

n-Octane (C8H18) 0.549 1.58×10−3 nm
n-Nonane (C9H20) 0.434 2.42×10−3 nm
n-Decane (C10H22) 0.428 2.02×10−3 nm
2,3-Dimethylbutane (C6H14) 0.127 3.59×10−3 nm
2-Methylpentane (C6H14) 0.398 4.84×10−3 nm
3-Methylpentane (C6H14) 0.312 1.17×10−2 nm
2,2,4-Trimethylpentane (C8H18) bdl 8.02×10−4 nm
Cyclopentane (C5H10) 0.134 8.53×10−4 nm
Cyclohexane (C6H12) 5.55×10−2 2.98×10−3 nm
Methylcyclohexane (C7H14) 5.84×10−2 bdl nm
Benzene (C6H6) 1.68 8.25×10−3 nm
Toluene (C7H8) 1.05 2.80×10−2 nm
Ethylbenzene (C8H10) 0.279 1.35×10−2 nm
m/p-Xylene (C8H10) 1.06 5.74×10−2 nm
o-Xylene (C8H10) 0.377 2.18×10−2 nm
Styrene (C8H8) 2.62×10−3 4.56×10−3 nm
i-Propylbenzene (C9H12) 2.84×10−2 4.07×10−4 nm
n-Propylbenzene (C9H12) 3.82×10−2 1.82×10−3 nm
3-Ethyltoluene (C9H12) 0.091 6.93×10−3 nm
4-Ethyltoluene (C9H12) 3.55×10−2 3.69×10−3 nm
2-Ethyltoluene (C9H12) 2.76×10−2 2.30×10−3 nm
1,3,5-Trimethylbenzene (C9H12) 5.88×10−2 4.30×10−3 nm
1,2,4-Trimethylbenzene (C9H12) 8.46×10−2 5.59×10−3 nm
1,2,3-Trimethylbenzene (C9H12) 2.76×10−2 2.03×10−3 nm
alpha-Pinene (C10H16) bdl 1.49×10−3 nm
beta-Pinene (C10H16) bdl 1.31×10−3 nm
Ethanol (C2H6O) – 4.84×10−3 nm
Acetaldehyde (C2H4O) 4.13×10−2 6.94×10−2 nm
Acetone (C3H6O) – 1.46E-01 nm
Butanal (C4H8O) bdl 2.19×10−3 nm
Butanone (C4H8O) – 2.29×10−3 nm
EF black carbon (BC) 1.72×10−2 (7.50×10−3) 0.112(0.063) nm
EF brown carbon (BrC) 1.74(0.34) 0.913(0.278) nm
EF Babs 405 (m2 kg−1) 1.86 (0.24) 2.03 (0.70) nm
EF Bscat 405 (m2 kg−1) 32.8 (2.1) 21.2 (12.8) nm
EF Babs 870 (m2 kg−1) 8.16×10−2 (3.56×10−2) 0.530 (0.300) nm
EF Bscat 870 (m2 kg−1) 0.670 (0.129) 1.75 (0.25) nm
EF Babs 405 just BrC (m2 kg−1) 1.70 (0.33) 0.895 (0.273) nm
EF Babs 405 just BC (m2 kg−1) 0.155 (0.102) 1.14 (0.64) nm
SSA 405 nm 0.946 (0.007) 0.881 (0.098) nm
SSA 870 nm 0.895 (0.029) 0.779 (0.103) nm
AAE 4.19 (0.73) 1.92 (0.50) nm

Note: “bdl” indicates below the detection limit; “–” indicates concentrations were not greater than background; “nm” indicates not
measured; C fractions: zigzag kiln (0.722), clamp kiln (0.644) (see Sect. 2.4).

ble 6 also includes the EFs specific to the emissions from
the stoke holes. The MCE is significantly reduced (0.861);
consequently, the EFs of smoldering compounds are much
higher with, e.g., high EF CO (230 g kg−1). Oddly, the stoke
hole smoke also had higher EFs for HF, HCl, NOx , and SO2,
compounds normally emitted during flaming combustion.

This is probably because the stoke holes are much closer to
the combustion zone, and many internally generated species
are scavenged in the kiln and stack walls before being emit-
ted from the stack. Some kilns have internal water reservoirs
below the stack to scavenge the smoke as rudimentary emis-
sions control. However, these stoke hole emissions do not
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Figure 6. The AAE calculated at 405 and 870 nm vs. SSA at 870 nm for the zigzag kiln measured every second during emissions collection.
Each data point is colored by MCE. This deviates from the typical trend in that the highest MCEs are not clustered at the lowest SSA or
AAEs. Some BrC is emitted at a variety of “higher” MCEs.

need to be weighted much if at all in an assessment of over-
all emissions as the vents are normally closed.

Table 6 includes the EFs for BC and BrC, and the EFs
for scattering and absorption at 405 and 870 nm, calculated
from all the real-time PAX (and colocated CO2) data above
background for separate plumes throughout the sampling
day, that we then averaged together. The SSA at 870 nm
(0.779± 0.103) indicates that BC contributes to the absorp-
tion in the fresh emissions, while the AAE (1.92± 0.50) im-
plies that the emissions are not pure BC. The PAX data sug-
gest that a little under half the absorption at 405 nm is due
to BrC. Weyant et al. (2014) reported a range of EFs for EC
for South Asian brick kilns (0.01–3.7 g kg−1) and our EF BC
(0.112 g kg−1) falls within the range they report. We note that
for all the other sources sampled in NAMaSTE and in the BB
literature, high values of SSA and AAE are mostly associ-
ated with a low MCE (smoldering) and low SSA and AAE
is associated with high MCE (flaming). This is illustrated for
crop residues in Fig. 5. For the zigzag kiln this pattern is
less pronounced. In the zigzag kiln, the highest MCE val-
ues are not clustered at the lowest SSA and AAE (Fig. 6).
Nearly all the real-time data from the zigzag kilns was at
high MCE (> 0.95) but accompanied by some evidence for
BrC emissions. Given the plethora of possible UV-absorbing
compounds in OA, characterizing the variety of primary and
secondary “BrC types” with different absorption intensities,
abundances, and lifetimes is an important area for future re-
search (Saleh et al., 2014).

3.8.2 Clamp kiln emissions

The clamp kiln emissions had a lower average MCE (0.950)
than the zigzag kiln (though still reflecting primarily efficient

combustion), which is not surprising since we estimate that
the fuel had a larger component of biomass. Consequently
the EFs for most products of incomplete combustion are∼ 5–
3000 times higher than those from the zigzag kiln and also
higher than values reported for a clamp kiln in Mexico that
burned mostly sawdust at an average MCE of 0.968 (Chris-
tian et al., 2010). Even though the MCE was lower, the clamp
kiln EF SO2 (13.0 g kg−1) was almost the same as the zigzag
kiln. This is most likely rationalized at least in part by the
higher sulfate emission factors for the zigzag kiln (Jayarathne
et al., 2016). For all grab samples of the clamp kiln, the NO
remained below the detection limit, while NO2 only had de-
tectable quantities for three grab samples near the end of
the day. HCl and HF probably remained below the detection
limit because of lower halogen content in the clay (vide infra
and Table S3).

If we convert and sum the NO2, NO, and HONO emissions
to “NOx as NO”, this quantity is more than 3.5 times higher
from the zigzag kiln. The coal from both kilns had similar
N content, so the difference in NOx emissions is most likely
traced to the higher MCE in the zigzag kiln. However, we
cannot completely rule out a different contribution of “ther-
mal NOx” between the kilns. Co-firing coal with biomass is
a common practice in power plants as it has been shown to
decrease combustion zone temperature and thermally depen-
dent NOx formation, thereby reducing several criteria pollu-
tants including NOx (USEPA, 2007; Al-Naiema et al., 2015).
Thus, the lower NOx EFs from the clamp kiln could be partly
due to co-firing with more biomass.

The differences in NMOC emissions for the two kiln types
were dramatic. We simply list some common pollutants and
precursors of concern and include the approximate clamp-
kiln-to-zigzag-kiln EF ratio in parentheses after each: CO
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(7), CH4 (223), ethane (2604), ethylene (30), benzene (203),
methanol (16), and phenol (28). In addition, many species
were emitted at high levels from the clamp kiln but were
below the detection limit from the zigzag kiln, including
formaldehyde, furan, hydroxyacetone, and ammonia. The
main emissions overall from the clamp kiln in order of mass
were CO2, CO, CH4, SO2, ethane, propane, hydroxyacetone,
BrC, methanol, and benzene. Methane is an important short-
lived climate pollutant, and the CH4 EF for the clamp kiln
(19.5 g kg−1) is among the highest seen for any combustion
source. The other alkanes were also extremely enhanced all
the way through n-decane, which had an EF of 0.428 g kg−1.
These enormous EFs for alkanes are not typical for BB and
might reflect burning coal inefficiently. Another possible ex-
planation is that used motor oil is reportedly sometimes dis-
posed of as fuel in brick kilns or added to the fuel to impart
color to bricks (USEPA, 1997; Christian et al., 2010). The en-
hancement observed for the alkanes throughout the C1–C10
size range that we could measure suggests that even larger
alkanes are also enhanced. Large alkanes have recently at-
tracted attention as important SOA precursors (Presto et al.,
2010). In our clamp kiln data, the sum of the EFs for NMOCs
we measured that are known to have high yields for SOA
(BTEX plus phenol) is ∼ 5 g kg−1, which is already much
larger than the initial EF OA as crudely approximated from
the EF BrC (∼ 2.0± 0.4 g kg−1).

The EF BC (0.02 g kg−1) for the clamp kiln was much
lower than for the zigzag kiln, and the co-collected filter data
are consistent with this result. Weyant et al. (2014) also noted
similar “low” EFs for EC for several brick kilns measured in
that study. The EF BrC was greater for the clamp kiln than
the zigzag kiln, which is consistent with the filter OC and an
expected result given a more significant biomass contribution
to overall fuel. The AAE and SSA were much greater for the
clamp kiln than the zigzag kiln (Table 6).

We had only one sample of the coal from each kiln, and the
elemental analysis is shown in Table S3. The likely higher
fuel variability for the non-C trace substances limits us to a
few general comments. The measured emissions of the sulfur
species from both kilns (including stoke holes) accounted for
about 60–111 % of the nominal S in the coal, which is a good
match given experimental uncertainty. The measured emis-
sions of N-containing species from both kilns were signifi-
cantly lower than the nominal coal N. Much of the missing N
was likely emitted as N2, especially at high MCE (Kuhlbusch
et al., 1991; Burling et al., 2010). Finally, the zigzag kiln
emissions had significantly higher halogen content than the
0.3 g kg−1 upper limit for the zigzag coal. This is consistent
with our speculation above that much of the halogen emis-
sions come from the clay and that this is a source of kiln-to-
kiln variability.

This is by no means an exhaustive evaluation of South
Asian brick kiln emissions. However, because there are so
few studies detailing the chemical composition of brick kiln
emissions, this is a valuable addition to the current body of

measurements. In terms of comparative pollution between
the two technologies, there are some trade-offs. The clamp
kiln we sampled produced far more BrC and a large suite of
NMOC pollutants and precursors typically associated with
inefficient combustion of biomass (e.g., HCHO and benzene)
or (likely) inefficient combustion of motor oil or coal (e.g.,
alkanes). The zigzag kiln we sampled produced significantly
more BC, NOx , HCl, and HF, where the latter two could be
larger partly because of the clay and not only the kiln de-
sign. For SO2 the kilns were not significantly different. Ul-
timately, since the zigzag kiln is thought to produce signifi-
cantly more bricks per unit fuel use than the clamp kiln (e.g.,
Weyant et al., 2014), this ratio should be further investigated
for scaling emissions (on a per brick basis). The zigzag kiln is
very likely preferred from the standpoint of pollutants emit-
ted per brick produced, which is a major factor in selecting
mitigation strategies. More measurement and modeling stud-
ies will clearly be needed to fully assess the impact of brick
kiln emissions and subsequent atmospheric chemistry in the
region.

4 Conclusions

We investigated the trace gas and aerosol emissions from
a large suite of major undersampled sources around Kath-
mandu and the Indo-Gangetic plain of southern Nepal. Our
source characterization included motorcycles, kilns, wood
and dung cooking fires, crop residue burning, diesel and
gasoline generators, agricultural pumps, and open garbage
burning. We report the emission factors (grams of compound
emitted per kilogram of dry fuel burned) for ∼ 80 important
trace gases measured by FTIR and WAS, including impor-
tant NMHCs up to C10 and many oxygenated organic com-
pounds. We also measured aerosol mass and optical prop-
erties using two PAX systems at 405 and 870 nm. We re-
port important aerosol optical properties that include emis-
sion factors (in m2 kg−1) for scattering and absorption at
405 and 870 nm, single scattering albedo, and absorption
Ångström exponent. From the direct measurements of ab-
sorption we estimated black and brown carbon emission fac-
tors (in g kg−1).

Although we were not able to sample the transport sector
extensively due to the Gorkha earthquake, we were able to
measure several motorbikes pre- and post-service. The mi-
nor maintenance led to minimal if any reduction in gaseous
pollutants, consistent with the idea that more major servicing
is needed to reduce gas-phase pollutants. Motorcycles were
in general among the least efficient sources sampled, and the
CO EF was on the order of ∼ 700 g kg−1, about 10 times
that of a typical biomass fire. For most fossil fuel sources,
including generators and agricultural pumps, diesel burned
more efficiently than gas but produced more NOx , HCHO,
and aerosol.
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Numerous trace gas emissions (many for the first time in
the field) were quantified for open cooking fires and sev-
eral improved cooking stoves with several fuel variations.
Authentic open dung cooking fires emitted high levels of
BrC (5.54± 1.66 g kg−1), NH3 (3.00± 1.33 g kg−1), organic
acids (7.66± 6.90 g kg−1), and HCN (2.01± 1.25 g kg−1),
where the latter could contribute to space-based observations
of high levels of HCN in the lower stratosphere above the
Asian monsoon. HCN and some alkynes > C2 (previously
linked to BB) were also observed from several non-biomass
burning sources. BTEX compounds were major emissions of
both dung (∼ 4.5 g kg−1) and wood (∼ 1.5 g kg−1) cooking
fires and a simple method to estimate indoor exposure to the
many important air toxics we measured in the emissions is
described. Our PAX data suggest relatively more absorption
by BrC as opposed to BC from cooking fires than may be
currently recognized, especially for dung burning. Biogas, as
expected, emerged as the most efficient and least polluting
cooking technology out of approximately a dozen types sub-
jected to limited testing.

The first global garbage burning inventory relied on mea-
surements from very few studies and information for many
compounds is often limited to laboratory simulations (Wied-
inmyer et al., 2014). Our authentic Nepali garbage burning
data shift the global average observed for this source to lower
MCE and significantly more BC and BTEX emissions than
in previous measurements, while supporting previous mea-
surements of high HCl. Crop residue burning produced EFs
in good agreement with literature values with relatively high
emissions of oxygenated organic compounds (∼ 12 g kg−1)
and SO2 (2.54± 1.09 g kg−1). We observed an EF for BrC
of ∼ 11 g kg−1 or about 4 times higher than the previous or-
ganic carbon literature average, which was based on fewer
data. Our EF BrC is qualitative but in agreement with our
absorption data and SSA in showing that BrC absorption is
important for this major global BB type.

There are very few studies detailing the chemical emis-
sions from brick kilns. While we were only able to sample
two brick kilns in this study, we present a significant expan-
sion in chemical speciation data. The two brick kilns sam-
pled had different designs and utilized different clay, coal,
and amounts of biomass for co-firing with the main coal
fuel. Consequently the two kilns produced very different
emissions. A zigzag kiln burning primarily coal at high ef-
ficiency produced larger amounts of BC, NOx , HF, and HCl,
(the halogen compounds likely mostly from the clay), while
the clamp kiln (with relatively more biomass fuel) produced
dramatically more organic gases, organic aerosol (BrC), and
aerosol precursors including large alkanes. Both kilns were
significant SO2 sources, with their emission factors averag-
ing ∼ 13 g kg−1.

Overall, we report the first, or in any case rare, opti-
cally and chemically detailed emissions data for many under-
sampled biomass burning sources and other undersampled
sources in developing countries. Companion papers will re-

port results from other co-deployed techniques, such as filter
sampling and mini-AMS, a source apportionment for a fixed
supersite, and model interpretation as guidance for mitiga-
tion strategies. In summary, we have provided the first exten-
sive suite of gases for most of the sources. For cooking fires
and crop residue burning, which are major South Asian and
global sources, we have shown that absorption by both BrC
and BC is significant, with BrC absorption even more pro-
nounced for dung fuel compared to wood fuel. On the other
hand, though we have begun to address these undersampled
sources, given the diversity and abundance of the sources,
much more work is needed, especially for gensets, pumps,
traffic, and brick kilns. Future measurements and modeling
are also needed to better understand the evolution of the
emissions we report here.

5 Data availability

Additional “raw” data not in the tables or Supplement will
be archived and available after publication of our initial pa-
pers. Contact the corresponding author or future NAMaSTE
papers for updates or details.

The Supplement related to this article is available online
at doi:10.5194/acp-16-11043-2016-supplement.
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