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Abstract. The Kathmandu Valley in Nepal is a bowl-shaped
urban basin that experiences severe air pollution that poses
health risks to its 3.5 million inhabitants. As part of the
Nepal Ambient Monitoring and Source Testing Experiment
(NAMaSTE), ambient air quality in the Kathmandu Valley
was investigated from 11 to 24 April 2015, during the pre-
monsoon season. Ambient concentrations of fine and coarse
particulate matter (PM2.5 and PM10, respectively), online
PM1, inorganic trace gases (NH3, HNO3, SO2, and HCl),
and carbon-containing gases (CO2, CO, CH4, and 93 non-
methane volatile organic compounds; NMVOCs) were quan-
tified at a semi-urban location near the center of the valley.
Concentrations and ratios of NMVOC indicated origins pri-
marily from poorly maintained vehicle emissions, biomass
burning, and solvent/gasoline evaporation. During those 2
weeks, daily average PM2.5 concentrations ranged from 30 to
207 µg m−3, which exceeded the World Health Organization
24 h guideline by factors of 1.2 to 8.3. On average, the non-
water mass of PM2.5 was composed of organic matter (48 %),
elemental carbon (13 %), sulfate (16 %), nitrate (4 %), am-

monium (9 %), chloride (2 %), calcium (1 %), magnesium
(0.05 %), and potassium (1 %). Large diurnal variability in
temperature and relative humidity drove corresponding vari-
ability in aerosol liquid water content, the gas–aerosol phase
partitioning of NH3, HNO3, and HCl, and aerosol solution
pH. The observed levels of gas-phase halogens suggest that
multiphase halogen-radical chemistry involving both Cl and
Br impacted regional air quality. To gain insight into the ori-
gins of organic carbon (OC), molecular markers for primary
and secondary sources were quantified. Levoglucosan (av-
eraging 1230±1154 ng m−3), 1,3,5-triphenylbenzene (0.8±
0.6 ng m−3), cholesterol (2.9±6.6 ng m−3), stigmastanol (1.0
±0.8 ng m−3), and cis-pinonic acid (4.5± 1.9 ng m−3) in-
dicate contributions from biomass burning, garbage burn-
ing, food cooking, cow dung burning, and monoterpene sec-
ondary organic aerosol, respectively. Drawing on source pro-
files developed in NAMaSTE, chemical mass balance (CMB)
source apportionment modeling was used to estimate contri-
butions to OC from major primary sources including garbage
burning (18± 5 %), biomass burning (17± 10 %) inclusive
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of open burning and biomass-fueled cooking stoves, and
internal-combustion (gasoline and diesel) engines (18±9 %).
Model sensitivity tests with newly developed source profiles
indicated contributions from biomass burning within a fac-
tor of 2 of previous estimates but greater contributions from
garbage burning (up to three times), indicating large potential
impacts of garbage burning on regional air quality and the
need for further evaluation of this source. Contributions of
secondary organic carbon (SOC) to PM2.5 OC included those
originating from anthropogenic precursors such as naphtha-
lene (10± 4 %) and methylnaphthalene (0.3± 0.1 %) and
biogenic precursors for monoterpenes (0.13± 0.07 %) and
sesquiterpenes (5± 2 %). An average of 25 % of the PM2.5
OC was unapportioned, indicating the presence of additional
sources (e.g., evaporative and/or industrial emissions such as
brick kilns, food cooking, and other types of SOC) and/or un-
derestimation of the contributions from the identified source
types. The source apportionment results indicate that an-
thropogenic combustion sources (including biomass burning,
garbage burning, and fossil fuel combustion) were the great-
est contributors to PM2.5 and, as such, should be considered
primary targets for controlling ambient PM pollution.

1 Introduction

According to the World Health Organization (WHO, 2016),
4.2 million (or 7.6 % of all) premature deaths globally dur-
ing 2016 were linked to ambient air pollution. The majority
of these premature deaths occurred in low- to middle-income
countries in the South Asia, East Asia, and western Pacific re-
gions. The Kathmandu Valley in Nepal is home to more than
3.5 million residents who suffer from high levels of air pollu-
tants, including particulate matter (PM), ozone (O3), carbon
monoxide (CO), and volatile organic compounds (VOCs)
(Bhardwaj et al., 2018; Kiros et al., 2016; Mahata et al.,
2018; Putero et al., 2015; Sarkar et al., 2016; Wan et al.,
2019) that are expected to have severe health impacts (Gu-
rung and Bell, 2013).

Effective mitigation of air pollution requires understand-
ing the major contributing sources. PM emissions contain
molecular and elemental fingerprints that reflect the mate-
rial from which the PM was generated and the process(es) by
which it formed. For organic aerosol sources, these chemi-
cal fingerprints include molecular markers that are defined as
chemical species unique to a PM source category (Schauer
et al., 1996). Well-established molecular markers for pri-
mary (direct emissions) and secondary (produced in the at-
mosphere from reactive precursors) sources are summarized
in Table 1. These species can be used to identify sources of
PM in ambient air both directly and through source appor-
tionment modeling.

The Nepal Ambient Monitoring and Source Testing Ex-
periment (NAMaSTE) was initiated in 2015 to characterize

widespread and under-sampled combustion sources in Nepal.
Source characterization measurements included trace gases
(Stockwell et al., 2016) and particulate matter (Goetz et al.,
2018; Jayarathne et al., 2018), as well as optical proper-
ties of aerosols (Stockwell et al., 2016). The characterized
sources included brick kilns, garbage burning, power genera-
tors, diesel groundwater pumps, idling motorcycles, cooking
stoves, crop residue burning, and open burning of biofuels.
As part of NAMaSTE, a regional monitoring station was also
installed to probe the relative contribution of these sources to
ambient air quality. In addition, new emissions data are being
incorporated into regional air quality models for the region
(Zhong et al., 2019).

High daily average concentrations of PM2.5 (up to
160 µg m−3) (Shakya et al., 2017a) and PM10 (up to
579 µg m−3) have been documented in the Kathmandu Valley
(Giri et al., 2006). A satellite-derived aerosol optical depth
study indicates substantial increases in particulate loading in
the Kathmandu Valley and nearby background sites over the
past 15 years (Mahapatra et al., 2019). Measured components
of regional PM have included black carbon (BC; 17 %), sul-
fate (17 %), and ammonium (11 %) in PM2.5 (Shakya et al.,
2017a) and organic carbon (OC; 23 %) and nitrate (2.5 %)
in PM10 (Kim et al., 2015). Carbon isotope analysis of bulk
aerosol sampled during the winter of 2007–2008 in the Kath-
mandu Valley suggested that a major fraction of particulate
OC originated from primary sources (69 %), particularly lo-
cal fossil fuel emissions (39 %) (Shakya et al., 2010). A
recent carbon isotope study observed that fossil fuel con-
tributed 67 % of the black carbon during April 2013 in the
Kathmandu Valley (Li et al., 2016).

An earlier chemical mass balance (CMB) source ap-
portionment study at Godawari, at the southeast edge of
the Kathmandu Valley identified sources of PM2.5 OC as
biomass burning (21 %), fossil fuel combustion (7 %), and
secondary organic aerosol (SOA) from biogenic precursors
(3 %) (Stone et al., 2010). However, the relative contribu-
tions of biomass and fossil fuel to elemental carbon (EC)
were highly uncertain due to large variability in EC emis-
sions with respect to combustion efficiency and air-to-fuel
ratios. A significant fraction of PM2.5 OC (54 %–84 %) in
that study was unapportioned suggesting significant contri-
butions from other primary and secondary sources. Assess-
ments of PM sources in this region were challenging due
in part to poorly characterized emissions from brick kilns,
garbage burning, and local industries (Stone et al., 2010).
Anthropogenic SOA was also identified as a likely source
of PM2.5 that was not previously apportioned (Stone et al.,
2012).

The primary goal of the study reported herein is to charac-
terize the composition of ambient gases and PM in the Kath-
mandu Valley, Nepal, and apportion major sources based on
new knowledge of source-specific emissions within the re-
gion. Our specific objectives are to (1) quantify atmospheric
loadings of volatile carbon-containing compounds (CO2,
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Table 1. Molecular markers for primary or secondary sources of particulate matter.

Source Molecular marker Reference

Biomass burning Levoglucosan Simoneit et al. (1999)
Fossil fuel combustion/evaporation Hopanes Schauer et al. (1999)
Food cooking Sterols Rogge et al. (1991)
Cow dung burning Stigmastanol Sheesley et al. (2003)
Garbage/plastic burning 1,3,5-Triphenylbenzene Simoneit et al. (2005)
Vegetative detritus n-Alkanes with odd carbon preference Rogge et al. (1993)
Isoprene SOA Methyltetrols Kleindienst et al. (2007)
Monoterpene SOA cis-Pinonic acid Kleindienst et al. (2007)
Sesquiterpene SOA β-Caryophyllinic acid Jaoui et al. (2007)
Naphthalene SOA Phthalic acid Kleindienst et al. (2012)
2-Methylnaphthalene SOA 4-Methylphthalic acid Kleindienst et al. (2012)

CO, CH4, and 93 non-methane volatile organic compounds;
NMVOCs), inorganic trace gases (NH3, SO2, HNO3, HCl,
total volatile inorganic Br), and PM mass in the Kathmandu
Valley during the pre-monsoon season; (2) chemically char-
acterize the major carbonaceous and ionic constituents of
PM; and (3) apportion organic carbon (OC) to its sources us-
ing CMB modeling with region-specific source profiles when
available. This work is designed to contribute to advancing
the understanding of the role of combustion and other ma-
jor pollution sources in South Asia and their effects on air
quality.

2 Methods

2.1 Site description

Ambient air was sampled at Bode (27.689◦ N, 85.395◦ E;
1345 m a.s.l.), which is a semi-urban location close to the
geographic center of the Kathmandu Valley (Fig. S1 in
the Supplement). Bode was the measurement supersite dur-
ing the Sustainable Atmosphere for the Kathmandu Valley-
Atmospheric Brown Clouds (SusKat-ABC) international air
pollution measurement campaign (Mahata et al., 2017, 2018;
Sarkar et al., 2016). Bode is located in Madhyapur-Thimi
Municipality and three major cities are located nearby: Kath-
mandu Metropolitan City to the west, Lalitpur Metropoli-
tan City to the southwest, and Bhaktapur Municipality to the
southeast. The Bode supersite was located in a newly devel-
oping suburban area that started with a grid of streets placed
across what were agricultural fields, with a gradual filling
in of houses on individual plots, while a lot of fields and
empty plots still remain. Nearby the Bode site are agricul-
tural fields, the Bhaktapur Industrial Estate with several small
pharmaceutical, plastic, and metal industries, and about 19
brick kilns located within 5 km to the east and southeast of
the site. Meteorological conditions (temperature, relative hu-
midity (RH), barometric pressure, global radiation and pre-
cipitation) were measured at Bode for this study with data

averaged every 5 min. From 23 to 26 April, on-site meteoro-
logical measurements were not available so meteorological
conditions recorded at the Tribhuvan International Airport in
Kathmandu, ca. 4 km to the west of Bode, were used instead.

2.2 PM and reactive trace gas sample collection

A medium volume sampler (URG-3000 ABC) was placed on
the rooftop of a five-story building at Bode, approximately
15 m (50 ft) above the ground. PM samples were collected
from 11 to 24 April 2015, during daytime (08:00 to 17:30)
and nighttime (18:00 to 07:30) intervals. PM2.5 was sampled
downstream of two 2.5 µm sharp-cut cyclones and PM10 was
sampled downstream of a 10 µm sharp-cut impaction plate.
Both air streams were split to collect four discrete PM sam-
ples in each size bin (total of eight samples per time inter-
val), at nominal flow rates of 7.4 L min−1 each. The flow
rate through each channel was measured before and after
the sample collection with a calibrated rotameter (Gilmont
Inst., Barrington, IL). PM in each size range was sampled on
three 47 mm quartz fiber filters (QFFs; Tissuquartz, Pall Life
Sciences, East Hills, New York) and one 47 mm Teflon fil-
ter (Teflo Membrane, 2.0 µm pore size, Pall Life Sciences).
QFFs were pre-cleaned by baking at 550 ◦C for 18 h to re-
move organic species (Stone et al., 2007). Following collec-
tion, exposed PM samples were transferred to polystyrene
petri dishes lined with pre-cleaned aluminum foil, capped,
sealed with Teflon tape, stored frozen in sealed polyethylene
bags, and shipped to the University of Iowa for analysis.

Soluble reactive trace gases were sampled downstream of
two of the PM2.5 QFFs during daytime and nighttime pe-
riods using a filter pack technique (Bardwell et al., 1990;
Keene et al., 2009; Pszenny et al., 2004). Total volatile in-
organic NO3 and Cl (dominated by and hereafter referred to
as HNO3 and HCl, respectively), SO2, and total volatile in-
organic Br− (Brt) were sampled using a three-stage, 47 mm,
Teflon filter pack housing configured with a QFF for PM col-
lection (as described above) followed by tandem rayon filters
(Schleicher and Schuell, 8S) impregnated with a solution of
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10 % potassium carbonate (K2CO3) and 10 % glycerol. NH3
was sampled in parallel using an otherwise identical filter
pack configured with tandem rayon filters impregnated with
a solution of 10 % citric acid (C6H8O7) and 10 % glycerol.

In total, 27 sets of ambient PM and reactive gas samples
were collected. Field blanks were prepared every fifth sam-
pling period by loading, mounting, recovering, unloading,
and processing filter housings using otherwise identical pro-
cedures as those for samples but without pulling air through
them. All filter housings and samples were loaded and un-
loaded using clean-handling procedures. Impregnated filters
were stored in polystyrene petri dishes that were capped,
sealed with Teflon tape, stored frozen in polyethylene bags,
and shipped to the University of Virginia for analysis.

Submicron PM (PM1) was characterized in parallel for
non-refractory constituents using a high-resolution aerosol
mass spectrometer (HR-AMS) (DeCarlo et al., 2006). The
inlet for the AMS was located within 5 m of the URG sam-
pler. Samples were size selected through a PM2.5 cyclone,
and dried to below 30 % RH by a counterflow Nafion dryer.
The AMS measures mass and composition of non-refractory
PM1 at 1 min time resolution. Calibrations were undertaken
for alignment, mass (ionization efficiency), and particle siz-
ing. Frequent, intermittent power outages at Bode interrupted
AMS operations necessitating long restart times and signifi-
cant losses of sampling. Due to associated data losses, only
10 of the filter samples aligned with concurrent AMS data
across the entire periods: 16 April nighttime to 17 April day-
time, 18 April daytime to 21 April daytime, and 22 April
daytime. An in-depth analysis of the HR-AMS data will be
the subject of a forthcoming paper, but general observations
will be used here to provide a higher time resolution context
for the filter measurements (see Sect. 3.2.1 for a discussion
of PM mass and Sect. 3.2.3 for sulfate concentrations).

2.3 Whole-air samples

Whole-air samples (WASs) were collected from 16 to
24 April 2015 before 08:25 or after 18:00 and analyzed
for CO2, CO, CH4, and 93 NMVOCs using multi-column
gas chromatography (Simpson et al., 2011; Stockwell et al.,
2016). The WAS analytical details, including calibration pro-
cedures, are described in detail in Simpson et al. (2011).
While the WAS sampling was cut short by the Gorkha earth-
quake on 25 April 2015 and only nine samples were col-
lected, the limited WAS sampling still provides useful con-
text for VOC levels and sources in the area.

2.4 PM2.5 mass measurement

PM mass was measured on Teflon filters as the differ-
ence between post- and pre-sampling filter masses. Prior to
mass measurements, filters were conditioned for 48 h in a
temperature- (22± 0.5 ◦C) and humidity- (34± 12 %) con-
trolled environment. Masses were measured in triplicate us-

ing an analytical microbalance (Mettler Toledo XP26). PM
mass per filter was converted to mass concentration (µg m−3)
using sampled air volume after field blank subtraction. The
analytical uncertainties in the mass measurements were cal-
culated following Jayarathne et al. (2018). The PM2.5 data
for the nighttime periods of 12 and 13 April were excluded
due to sampling errors and filter damage, respectively.

2.5 Organic and elemental carbon measurement

Organic carbon (OC) and elemental carbon (EC) were
measured following the National Institute for Occupational
Safety and Health (NIOSH) 5040 method (NIOSH, 2003) us-
ing 1.0 cm2 filter punches from sampled QFF (Sunset OC-EC
Aerosol Analyzer, Sunset Laboratories, Tigard, OR) (Birch
and Cary, 1996). OC data were field blank subtracted, while
EC was not detected on field blanks. The uncertainties in OC
and EC measurements were calculated following Jayarathne
et al. (2018).

2.6 Analysis of particulate inorganic ions

Water-soluble inorganic ions in PM were extracted in
5 mL deionized water and analyzed by ion exchange chro-
matography (IC) with conductivity detection (Dionex-ICS
5000), with details of the analytical method, uncertainties,
and detection limit calculations provided by Jayarathne et
al. (2014). Unusually high concentrations of Na+, Mg2+,
Ca2+, and F− were observed in the field blanks collected
on 15 April and PM samples collected from 15 to 17 April,
indicating likely contamination of these samples. Thus, con-
centrations of these ions during this time period were not re-
ported and were excluded in the calculation of average con-
centrations.

2.7 Analysis of reactive trace gases

Exposed rayon filters were extracted under sonication in
5 mL of deionized water and analyzed by IC (Dionex-
ICS 3000, dual channel). The anion channel was configured
with Dionex guard (AG-4A 4× 50 mm) and analytical (AS-
4A 4× 250 mm) columns and a Dionex Anion Micro Mem-
brane Suppressor (AMMS). The cation channel was config-
ured with Dionex guard (IonPac CG16: 5× 50 mm) and an-
alytical (IonPac CG16: 5× 250 mm) columns and a Thermo
Scientific Dionex Cation Electrolytically Regenerated Sup-
pressor (CERS 500: 4 mm). Standard solutions were matrix
matched with sample extracts. Analytical results for sam-
ples were blank corrected based on median concentrations
of analytes measured in extracts of field blanks. Indepen-
dent analyses of tandem rayon filters indicate that all ana-
lytes were sampled by the upstream filters at average effi-
ciencies of greater than 98 %. Average detection limits es-
timated following Keene et al. (1989) were 0.66 ppbv for
NH3, 0.065 ppbv for HNO3, 0.035 ppbv for HCl, 0.18 ppbv
for SO2, and 0.014 ppbv for Brt. Estimated precisions based
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on replicate analyses were approximately ±5 % of measured
mixing ratios or ±0.5 times estimated detection limits (DL),
whichever were the greater absolute values. Due to sus-
pected contamination of filter samples collected during 15
to 17 April 2015 (described in Sect. 2.6), results for these
samples were excluded from the reported data set.

2.8 Thermodynamic calculations

Aerosol liquid water contents (LWCs), activity coefficients,
and the partitioning between ionized and solid aerosol con-
stituents were calculated using E-AIM (Extended Aerosol In-
organics Model) IV, which considers particles comprised of
NH+4 , Na+, SO2−

4 , NO−3 , Cl−, and H2O (Friese and Ebel,
2010) (http://www.aim.env.uea.ac.uk/aim/aim.php, last ac-
cess: 21 January 2020). E-AIM requires that the input data
for ionic composition be balanced on an equivalent basis
(i.e., 6 cations=6 anions). Unmeasured ionic constituents
(e.g., carboxylic anions such as oxalate), ionic constituents
that were measured but are not considered by E-AIM (e.g.,
K+, Mg2+, and Ca2+), and random analytical errors intro-
duce minor ion imbalances into the subsets of input data. To
balance an anion deficit for a given sample, the input concen-
trations of SO2−

4 , NO−3 , and Cl− were increased in proportion
to their measured concentrations on an equivalent basis. Sim-
ilarly, to balance a cation deficit, concentrations of NH+4 and
Na+ were increased in proportion to their measured concen-
trations. Because the ionic compositions of aerosol sampled
were dominated by NH+4 , SO2−

4 , NO−3 , and Cl−, these adjust-
ments in measured concentrations were relatively minor (typ-
ically < 15 % for a given analyte). Sensitivity studies indicate
that alternative approaches to charge balance input data for
E-AIM yield similar results (e.g., Young et al., 2013).

For each sample, the input data included the measured (or
adjusted as described above) concentrations of NH+4 , Na+,
SO2−

4 , NO−3 , and Cl− and the corresponding temperature and
RH averaged over the sampling interval. Model output used
for subsequent calculations included aerosol LWC; activity
coefficients for NH+4 , NO−3 , and Cl−; and, for mixed-phase
particles, the partitioning of NH+4 , NO−3 , and Cl− between
dissolved and solid phases. E-AIM simulated three distinct
regimes: (1) at RH greater than about 75 %, the aerosol was
completely deliquesced (i.e., virtually all NH+4 , NO−3 , and
Cl− were ionized); (2) at RH less than about 60 %, parti-
cles existed entirely as solids with only tightly bound wa-
ter molecules and negligible LWC; (3) at RH between about
60 % and 75 %, constituents partitioned between dissolved
and solid (primarily (NH4)2SO4) phases. The extraction of
aerosol samples into dilute aqueous solutions prior to anal-
ysis would have dissolved any solid phases that were orig-
inally present in particles at ambient LWCs. Consequently,
the measured concentrations of ions in dilute aerosol extracts
correspond to the total concentrations (ionized+ solid) that
existed in ambient aerosol prior to extraction. In these cases,
the ratios of ionized to total (ionized+ solid) NH+4 , NO−3 ,

and Cl− predicted by the model were used to calculate the
fractions of the measured concentrations that were ionized in
aerosol solutions at ambient RH.

Equilibrium hydrogen ion activities for PM2.5 and PM10
during each sampling interval were calculated based on
the measured phase partitioning and associated thermody-
namic properties of compounds with pH-dependent solubili-
ties (HNO3, NH3, and HCl) following the approach of Keene
and Savoie (1998). Briefly, using HNO3 as an example, the
equilibrium

HNO3 (g)
KH
←→ HNO3 (aq.)

Ka
←→ H++ NO−3 (1)

was evaluated on the basis of simultaneous measurements of
gas-phase HNO3 mixing ratios and particulate NO−3 concen-
trations in air; temperature-adjusted Henry’s Law (KH) and
acidity (Ka) constants for HNO3 (Young et al., 2013); and
aerosol LWCs, NO−3 activity coefficients, and the fractions
of measured particulate NO−3 concentrations that were ion-
ized as predicted by E-AIM (described above).

Although all concentrations of particulate Cl− were
greater than estimated detection limits, most mixing ratios
(75 %) for volatile inorganic Cl were less than the detection
limit and the balance of measurements was near the detection
limit. Consequently, the phase partitioning of HCl and as-
sociated data interpretations were poorly constrained. How-
ever, NH3, HNO3, particulate NH+4 , and particulate NO−3
were present at concentrations well above the corresponding
detection limits and, as described in Sect. 3.2.4 below, the
measured gas–aerosol phase partitioning of NH3 and HNO3
yielded paired estimates of aerosol solution pHs that agreed
well (generally within±0.1 to±0.3 pH units). In the absence
of direct reliable measurements of HCl, the equilibrium mix-
ing ratio for HCl during each sampling interval (hereafter re-
ferred to as HClcalc) was estimated using the same thermody-
namic approach described above based on the mean H+ ac-
tivity inferred from the measured phase partitioning of NH3
and of HNO3, the Cl− concentration for PM2.5, the thermo-
dynamic properties of HCl, meteorological conditions, the
aerosol LWC, Cl− activity coefficient, and fraction of mea-
sured particulate Cl− that was ionized as predicted by E-
AIM.

Results based on the above approach are subject to sev-
eral inherent limitations. (1) As indicated above, E-AIM IV
evaluates only a subset of major inorganic constituents. Be-
cause potential influences of organic matter on aerosol hy-
groscopic properties are not considered, the modeled esti-
mates of water contents may diverge to some extent from
those in ambient air. However, as mentioned above, paired
independent estimates of aerosol solution pH based on the
phase partitioning of HNO3 and of NH3 and corresponding
meteorological conditions measured simultaneously yielded
similar results. These two compounds have distinct ther-
modynamic properties and associated pH-dependent solu-
bilities; the solubility of HNO3 decreases, whereas that of
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NH3 increases with decreasing solution pH. The good agree-
ment between the paired results suggests that estimates of
aerosol pH during the campaign were relatively insensi-
tive to potential influences of organic matter on water con-
tents. (2) PM2.5 and PM10 were collected in bulk over rela-
tively long (nominally 12 h) sampling intervals, which could
have driven artifact phase changes of compounds with pH-
dependent solubilities and associated bias in the measured
gas and particle phases species concentrations. For exam-
ple, based on their thermodynamic properties, NH3 parti-
tions preferentially with the more highly acidic, typically
smaller longer-lived aerosol size fractions, whereas HNO3
and HCl partition preferentially with less acidic, typically
larger shorter-lived aerosol size fractions (Keene et al., 2004;
Young et al., 2013). When chemically distinct particles are
mixed together in a bulk PM2.5 or PM10 sample, the pH of
the bulk mixture typically differs from that of the aerosol
size fractions with which these gases partitioned preferen-
tially in ambient air, which drives artifact volatilization of
NH3 as well as HNO3 and HCl (Keene et al., 1990; Young
et al., 2013). (3) Similarly, mixing chemically distinct parti-
cles sampled at different times over sampling intervals could
drive artifact volatilization or condensation of gases. Expos-
ing time-integrated aerosol samples to gas-phase mixing ra-
tios that vary over sampling intervals can also drive arti-
fact phase changes. Because of their large surface-to-volume
ratios, sub-micrometer-diameter particles rapidly equilibrate
(in seconds to minutes) with interstitial gases and, conse-
quently, are typically at or near thermodynamic equilibrium
with the gas phase (Meng and Seinfeld, 1996). In contrast,
larger particles equilibrate more slowly and may exhibit finite
phase disequilibria (e.g., Keene and Savoie, 1998). The as-
sumption of thermodynamic equilibrium on which this anal-
ysis is based may not be entirely valid for constituents as-
sociated primarily with larger aerosol size fractions. (4) In
addition, the use of average values to characterize meteoro-
logical conditions over sampling intervals does not capture
the full range of variability of the multiphase system. On
most days, RH fell to minima less than 60 % during day-
time and increased to maxima greater than 75 % at night.
Consequently, based on E-AIM, the actual hydration state of
particles varied from virtually dehydrated to virtually com-
pletely deliquesced conditions over most diel cycles. Pre-
sumably, between collection and recovery, the compositions
of aerosol deposits on sample filters exposed to ambient air
also evolved in response to changing RH and temperature. If
so, meteorological conditions at recovery times rather than
those averaged over sampling intervals may be more ap-
propriate metrics for evaluating phase partitioning and pH.
(5) Finally, the thermodynamic properties of gases consid-
ered herein (particularly HCl) are associated with non-trivial
uncertainty that contributes to variability in results as dis-
cussed by Young et al. (2013). Despite these limitations,
the results provide useful insight regarding major processes
that modulate gas–aerosol phase partitioning of major at-

mospheric constituents, associated aerosol acidities, and pH-
dependent chemical transformations in the Kathmandu Val-
ley.

2.9 Extraction and analysis of organic species in PM2.5
by gas chromatography mass spectrometry

All glassware used in solvent extraction was prewashed with
ultrapure water and baked at 500 ◦C for 5.5 h. Based on the
OC loading on the filters, one or more QFF for each time pe-
riod was extracted following the procedure described in Al-
Naiema et al. (2015). Organic species were analyzed using
gas chromatography coupled to mass spectrometry (GC-MS,
Agilent Technologies GC-MS 7890A) equipped with an Agi-
lent DB-5 column (30 m× 0.25 mm× 0.25 µm) and electron
ionization (EI) source with a temperature program described
in Stone et al. (2012). All the measured species were field
blank subtracted, and analytical uncertainties of the measure-
ments were propagated from the standard deviation of the
field blanks and 20 % of the measured concentration to con-
servatively account for compound recovery from QFF. De-
tails of the extraction process and GC temperature program
are provided in the Supplement (S1).

2.10 Quality control in chromatographic
measurements of PM

For every five ambient samples, one lab blank, one field
blank, and one spike recovery sample were analyzed for both
organic species and inorganic ions. Spike samples were pre-
pared from blank filters spiked with known concentrations
of analytes. These quality control samples were extracted
simultaneously with ambient samples. Spike recoveries, re-
ported as percent, were calculated as the quotient of the lab
blank-corrected measured concentration and spiked concen-
tration. Spike recoveries of all the reported chemical species
were within±20 % for the organic species and±10 % for the
inorganic ions. Reproducibility and method detection limits
for all the organic species are presented in Table S1 in the
Supplement.

2.11 Chemical mass balance modeling

PM2.5 OC was apportioned to its contributing sources us-
ing the Environmental Protection Agency’s chemical mass
balance (EPA-CMB) model (version 8.2) using molecular
marker concentrations in ambient PM2.5 and source pro-
files as model inputs. Source profiles for garbage burning
(fire nos. 14A and 14B), open biomass burning (fire no. 39),
biomass- and dung-powered traditional cooking stoves (fire
nos. 37, 38, 40, and 41) were drawn from NAMaSTE in
2015 (Jayarathne et al., 2018). Other primary and secondary
source profiles were drawn from the literature: vegetative
detritus (Hildemann et al., 1991; Rogge et al., 1993), non-
catalyzed gasoline engines (Lough et al., 2007; Schauer et
al., 2002), diesel engines (Lough et al., 2007), small-scale
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coal combustion (Zhang et al., 2008), isoprene, monoter-
pene, and sesquiterpene-derived SOA (Kleindienst et al.,
2007), and aromatic SOA from naphthalene and methyl-
naphthalene (Kleindienst et al., 2012). The model sensitiv-
ity to the input source profiles were evaluated by systemati-
cally varying the biomass burning and garbage burning pro-
files developed in NAMaSTE-2015 (Jayarathne et al., 2018),
which examined the following source profiles: open biomass
burning, a mud stove fueled by wood and cow dung, a mud
stove fueled by cow dung, a mud stove fueled by twigs, a
mud stove fueled by wood, and mixed garbage burning (sam-
ples A and B, discussed further in Sect. 3.6).

2.12 Statistical analysis

The detectability of organic and inorganic species was
100 %, except for 17α(H)-22,29,30-trisnorhopane (96 %),
17β(H)-21α(H)-30-norhopane (96 %), cholesterol (93 %),
stigmasterol (89 %), 1-methylchrysene (93 %), stigmastanol
(67 %), retene (56 %), and coprostanol (30 %). Prior to statis-
tical analysis, data points with values below detection limits
were replaced with the limit of detection (LOD) /

√
2 (Hewett

and Ganser, 2007). All the concentrations were tested for
normality and lognormality using the Anderson–Darling test.
Concentrations of all the species were either normally or log-
normally distributed; thus Pearson’s correlation (r) was em-
ployed for correlation analysis. Two sample t tests were used
to compare the means of daytime and nighttime concentra-
tions. All statistical tests were performed in Minitab (ver-
sion 17) and significance was assessed at the 95 % confidence
interval (p ≤ 0.05).

3 Results and discussion

3.1 Abundance of VOC, CO2, and CO

3.1.1 VOC abundance

Excluding oxygenated compounds, the 10 most abundant
NMVOCs in descending order based on median values
were ethene, ethyne, ethane, propene, propane, i-pentane, i-
butane, n-butane, toluene, and m/p-xylene. These and other
selected NMVOC measurements in WAS are summarized in
Table 2, with the corresponding precisions, accuracies, and
detection limits. Ethene and propene are major biomass burn-
ing products and major components of vehicle exhaust (Ak-
agi et al., 2011; Guo et al., 2011), so their high abundance
is expected given the prevalence of these sources. Ethyne is
a general combustion tracer that is expected to reflect vehic-
ular, biomass, and biofuel combustion (Abad et al., 2011).
Ethane also has multiple major sources including fossil fuel
evaporation and combustion, biomass burning, and biofuel
combustion (Guo et al., 2011; Xiao et al., 2008). Ethane
correlated most strongly with the combustion tracer ethene
(r = 0.81) and with CH4 (r = 0.66), which has many an-

thropogenic sources, suggesting that multiple ethane sources
contribute. CH4 is likely then to derive at least partially from
combustion and is not expected to derive from natural gas
production, processing, or transmission, due to a lack of natu-
ral gas infrastructure in the Kathmandu Valley in 2015, aside
from a small number of household-scale biogas plant sys-
tems. Additionally, the presence of numerous outliers in the
data set suggests that individual grab samples were occasion-
ally impacted disproportionately by local rather than regional
sources (Table S2). The C3-C5 alkanes are not major biomass
burning products but are associated with liquefied petroleum
gas (LPG) and gasoline (Guo et al., 2011). Their abundance
here suggests a traffic or fossil fuel source (as discussed in
Sect. 3.1.2). In urban centers toluene often reflects traffic,
gasoline evaporation, and/or solvents (Ou et al., 2015; Tsai
et al., 2006). Four-stroke engines are abundant in the Kath-
mandu Valley, and their emissions are rich in aromatic VOCs
(Shrestha et al., 2013). Here toluene correlated best with
C4-C5 alkanes and ethylbenzene (r = 0.86 to 0.94) though
surprisingly poorly with the vehicle exhaust tracer ethene
(r = 0.01). While recognizing the limited sample size, this
could suggest gasoline evaporation due to toluene’s correla-
tion with i-pentane (Tsai et al., 2006). Further study would
help to clarify toluene’s sources.

Relative to previous measurements of NMVOC with a
PTR-TOF-MS (proton transfer reaction time-of-flight mass
spectrometer) at Bode from December 2012 to January 2013
during the SusKat-ABC campaign (Sarkar et al., 2016), con-
centrations of the NMVOCs listed in Table 3 were generally
lower during NAMaSTE in April 2015. Seasonal variability
in meteorology likely contributes to these differences. Mix-
ing layer depths and associated dilution of regional emissions
peak during the pre-monsoon season (March–May, includ-
ing this study), whereas mixing layer depths are shallower
during winter (Mues et al., 2017). Several rain events oc-
curred during April 2015 (specifically on 12 to 13, 15, 17
to 18, and 21 April) with a total of 24.2 mm of precipita-
tion. Associated scavenging would also have contributed to
the lower pollution levels during this study relative to the dry
winter season characterized during the SusKat-ABC cam-
paign. Notably, isoprene levels were nearly 10 times lower
during April 2015 compared to the winter of 2012–2013.
Sample collection in the early morning and late afternoon
contributed to low isoprene concentrations in this study as
peak isoprene concentration is typically observed during the
midday (Karl et al., 2007). Previous studies report two pri-
mary reasons for low isoprene emissions: (i) immaturity of
leaves, until reaching an age of 23 d (Kuzma and Fall, 1993)
and (ii) temperatures lower than 35 ◦C (Monson et al., 1992).
By April, nearly all deciduous trees in the Kathmandu Valley
have leaves, although spring 2015 was unusually cold and the
low temperatures leading up to and during the measurement
period did not favor isoprene emissions as further discussed
in Sect. 3.2.6. The whole-air sampling in this study provides
additional chemical detail to the high time resolution mea-
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Table 2. Means, standard deviations, medians, and ranges of concentrations of methane, CO, CO2, carbonyl sulfide (COS), and select non-
methane volatile organic compound (NMVOC) mixing ratios measured at Bode in April 2015 (n= 9). Species reported here include the 20
most abundant species, with all NMVOC measurements provided in Table S1. Units are in parts per billion by volume, unless noted.

Compound Precision (%) Accuracy (%) Mean ± SD Median Range

CH4 (ppmv) 0.1 1 1.999± 0.082 1.976 1.926–2.188
CO (ppmv) 2 5 0.766± 0.751 0.509 0.362–2.737
CO2 (ppmv) 2 2 425± 8 424 415–435
Carbonyl sulfide 2 10 0.66± 0.20 0.59 0.47–1.13
CH3Cl 5 10 0.87± 0.22 0.86 0.67–1.42
Ethane 1 5 2.29± 0.39 2.20 1.69–2.74
Ethene 3 5 3.20± 1.11 3.26 1.59–4.64
Ethyne 3 5 3.06± 1.46 2.68 1.51–6.31
Propane 2 5 2.05± 1.69 1.39 0.69–5.77
Propene 3 5 1.92± 1.04 1.68 0.54–3.51
i-Butane 3 5 1.47± 0.97 1.29 0.28–3.21
n-Butane 3 5 1.39± 0.80 1.27 0.23–2.47
i-Butene 3 5 0.93± 0.80 0.82 0.12–2.81
1,3-Butadiene 3 5 0.13± 0.09 0.17 0.02–0.28
i-Pentane 3 5 1.77± 1.76 1.38 0.10–6.07
n-Pentane 3 5 0.46± 0.37 0.45 0.03–1.25
n-Hexane 3 5 0.29± 0.26 0.21 0.03–0.80
n-Heptane 3 5 0.24± 0.36 0.10 0.02–1.18
n-Octane 3 5 0.12± 0.08 0.09 0.05–0.30
n-Nonane 3 5 0.18± 0.14 0.16 0.04–0.42
Benzene 3 5 1.01± 0.49 0.86 0.59–2.19
Toluene 3 5 0.99± 0.53 1.06 0.30–1.84
m/p-Xylene 3 5 1.11± 0.61 1.02 0.20–2.26
o-Xylene 3 5 0.46± 0.29 0.40 0.13–0.89
Methanol 30 20 4.38± 1.66 3.94 2.82–7.98
Ethanol 30 20 4.34± 2.36 3.97 1.51–9.85
Acetaldehyde 30 20 5.24± 4.17 3.53 1.56–15.15
Butanone 30 20 0.98± 1.05 0.71 0.00–3.63
Isoprene 3 5 0.11± 0.07 0.09 0.06–0.24
α-Pinene 3 5 0.11± 0.12 0.05 0.03–0.30
β-Pinene 3 5 0.09± 0.07 0.06 0.02–0.18
6 measured NMVOC n/a n/a 48± 19 45 25–83

n/a: not applicable.

surements by PTR-TOF-MS during the SusKat-ABC inten-
sive campaign (Sarkar et al., 2016), including the resolution
of alkane and aromatic VOC isomers, chlorofluorocarbons,
and alkyl nitrates (Table S2).

In comparison to other cities in South Asia (Table 3), the
NMVOC levels observed in Kathmandu were 1.3 to 8.5 times
lower than in Mohali, India (Sinha et al., 2014), 2.6 to 6.7
times lower than in Karachi, Pakistan (Barletta et al., 2002),
9.5 to 33 times lower than in heavily polluted Lahore, Pak-
istan (Barletta et al., 2017), and about a factor of 2 higher
than in Singapore (Barletta et al., 2017). Bearing in mind
the small sample size, the observed NMVOC levels in Kath-
mandu indicate that in April 2015, it was moderately polluted
with respect to other South and Southeast Asian cities, with
relatively low biogenic VOC influences.

CO2 concentrations in Kathmandu are elevated above the
global background (Table 2). CO (like the NMVOCs and
PM) is an excellent indicator of air pollution levels and
is derived from combustion rather than solvents or sec-
ondary sources. As shown in Table 3, the pattern of CO en-
hancements relative to other studies is similar to the pattern
for most NMVOCs. The three studies in Kathmandu during
the dry season have similar values to each other. The impor-
tance of combustion as a source of air pollutants, particularly
PM, is consistent with the carbon mass balance source ap-
portionment results discussed in Sect. 3.3.

3.1.2 VOC sources

Because the NMVOC data set is too small (n= 9) to be used
in source apportionment techniques like positive matrix fac-
torization (PMF), we use VOC ratios to further probe source
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influences. All NMVOC ratios cited herein have been re-
ported previously by Simpson et al. (2014) and references
therein, Akagi et al. (2011), and Stockwell et al. (2016). The
ratio of i-pentane / n-pentane increases from ∼ 1 for natu-
ral gas to ∼ 4 for gasoline evaporation. Here, the ratio was
4.7± 0.4 (r = 0.97), consistent with gasoline evaporation as
has been seen in other cities such as Mecca, Saudi Arabia
(Simpson et al., 2014). The diurnal ambient temperature dur-
ing this study ranged from 12 to 29 ◦C, which is conducive to
evaporation. As in Mecca, fuel pump hoses in the Kathmandu
Valley are not equipped with vapor recovery technology and
vehicles are not equipped with catalytic converters, which
may partially explain the abundance of the gasoline evapo-
ration tracer i-pentane. Ethene/ethyne can be used to differ-
entiate petrochemical sources (10–30) from biomass burning
(2–5) and vehicle exhaust (1–3), with ratios below 1 reflect-
ing older emissions control technology due to higher ethyne
emissions. Here the ratio was 0.5, similar to Saudi Arabia
(0.73), suggesting a very large impact of older or poorly
maintained vehicles (Zhang et al., 1995). The i-butane / n-
butane ratio can sometimes help to distinguish influence from
vehicles (∼ 0.2 to 0.3), LPG combustion (∼ 0.42 to 0.46),
and natural gas leaks (∼ 0.6 to 1.0). Here the butane ratio
was relatively high (∼ 1, r2

= 0.90) as compared to cities in
Saudi Arabia and Pakistan (0.4 to 0.6; Barletta et al., 2017;
Simpson et al., 2014). The cause of the relatively abundant
i-butane could be a mix of sources, such as non-evaporative
liquid petroleum gas emissions (1.39), aged gasoline genera-
tor (1.17), diesel generator (0.87), agricultural fires (0.93), or
zigzag kilns (0.84) (Stockwell et al., 2016), which requires
further investigation. Acetaldehyde was a major NMVOC
consistent with past work (Table 3), and it has a variety of
poorly constrained primary and secondary sources (Akagi
et al., 2011; Stockwell et al., 2016). These observations are
consistent with the PMF analysis of NMVOC measurements
during the SusKat-ABC intensive campaign, which indicated
that traffic and industrial emissions were the largest sectors
contributing to NMVOC mass loadings, at 17 % and 18 %,
respectively (Sarkar et al., 2017). The large diversity of com-
bustion emissions in Kathmandu, the apparent influence of
point NMVOC sources, and chemical signatures not previ-
ously observed in South Asia (discussed above) indicate that
additional research with a larger sampling size is needed to
better understand NMVOC sources in the Kathmandu Val-
ley. Such research is ongoing as part of our second Nepal
Ambient Monitoring and Source Testing Experiment (NA-
MaSTE2).

3.2 Particulate matter and inorganic trace gases

3.2.1 PM2.5 and PM10 concentrations

PM2.5 mass concentrations averaged over 11 h at the Bode
supersite from 11 to 24 April 2015 ranged from 30.0 to
207.4 µg m−3 (Fig. 1) and averaged (± standard deviation)

Figure 1. Non-water mass concentrations of (a) PM2.5
and (b) PM10 during daytime and nighttime periods and mass
contributions from OC, EC, and inorganic ions. OC and EC were
not measured in PM10 samples and were assumed to be the same
as PM2.5 for mass balance purposes. The remaining mass of PM2.5
includes elements associated with OC (hydrogen, oxygen, nitrogen,
etc.), metals, and other unmeasured species. Error bars represent
propagated analytical uncertainties. The PM2.5 mass was not
quantified for nighttime samples collected on 12 April nor 13 April
as described in Sect. 2.2.

68.2± 34.7 µg m−3. PM10 mass concentrations ranged from
51.9 to 294.0 µg m−3 and averaged 119.7± 55.2 µg m−3.
All of the 11 h PM2.5 and PM10 concentrations exceed
the World Health Organization (WHO) 24 h guidelines of
25 and 50 µg m−3, respectively. The maximum concentra-
tions of PM2.5 and PM10 occurred during the night of
11 April (Fig. 1), concurrent with the Bisket Jatra festival;
see Sect. 3.4 for a detailed description of this pollution event
and its source characteristics.

The average PM2.5 concentration observed in this study
is about half the mean 24 h average PM2.5 concentration
near six major road intersections in the Kathmandu Val-
ley (which averaged 125± 56 µg m−3) during the relatively
drier period February–April 2014 (Shakya et al., 2017b). The
average PM2.5 concentration in the Kathmandu Valley was
about a factor of 2 higher than at a more rural and cleaner
foothill site at Godawari (34 µg m−3) during April 2006
(Stone et al., 2010) and about a factor of 13 higher than
the PM1 concentration (5.4 µg m−3) at the Nepal Climate
Observatory-Pyramid (NCO-P) site (near the base camp for
Mt. Everest) in the southern Himalaya (27.95◦ N, 86.82◦ E)
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during March–April 2006 (Bonasoni et al., 2008). The aver-
age PM10 concentration in the Kathmandu Valley observed
in this study period is similar to the average concentration
(155± 124 µg m−3) of total suspended particles at Bode be-
tween April 2013 and March 2014 (Chen et al., 2015).

PM concentrations at Bode were consistently higher dur-
ing nighttime (83 µg m−3 for PM2.5 and 121 µg m−3 for
PM10) compared to daytime (54 µg m−3 for PM2.5 and
117 µg m−3 for PM10). The high time resolution data for the
AMS total signal (Fig. 2) indicate that PM mass increases
overnight, peaks around 08:00 local time, and thereafter de-
creases to minima around 17:00. Diurnal variability in PM
loadings is attributed to four interrelated factors. (1) Bound-
ary layers and the corresponding volumes of air into which
pollutants are emitted are relatively shallower at colder noc-
turnal temperatures (Mues et al., 2017). Although vertical
temperature profiles were not measured, the Kathmandu Val-
ley frequently experiences shallow nocturnal inversion as ev-
ident in ceilometer measurements during the SusKat-ABC
campaign (Mues et al., 2017). (2) Wind speeds during the
pre-monsoon season and the corresponding dilution of PM
emitted into or produced within that air flow are typically
lower at night (< 1 m s−1) relative to daytime (1 to 5 m s−1)
(Fig. 2). The afternoon increase in wind speed corresponds
to minimum PM values, while lower wind speeds in early
evening coincide with higher concentrations. (3) The diur-
nal wind dynamics in the Kathmandu Valley have been pre-
viously described (Mahata et al., 2017; Panday and Prinn,
2009; Panday et al., 2009; Sarkar et al., 2016). From midday
to dusk, strong westerly flows carry pollutants from Kath-
mandu and Lalitpur towards the east and south passes of the
valley, and the mixing layer height reaches its maximum.
During evening, relatively stagnant cooler air causes pollu-
tants from the Bhaktapur Industrial Estate (which includes
∼ 19 biomass- and coal-fired brick kilns) located within 1
to 5 km of Bode to accumulate near the surface, with slight
elevation due to mild downslope flows. In the early morn-
ing, elevated pollutants briefly recirculate back to the surface.
Later in the morning, upslope flows loft polluted air prior to
the emergence of the strong westerly winds. (4) As discussed
in more detail below, diel variability in temperature and RH
drove corresponding diel variability in aerosol liquid water
content, aerosol solution pH, and the gas–aerosol phase par-
titioning of compounds with pH-dependent solubilities. The
higher RHs and aerosol liquid water contents at night shifted
partitioning towards the particulate phase, thereby contribut-
ing to relatively higher PM mass concentrations at night. All
of the above factors contribute to the relatively higher PM
concentrations in near-surface air at Bode during nighttime.

3.2.2 PM2.5 organic and elemental carbon

OC concentrations ranged from 7.9 to 57.3 µg C m−3 (aver-
aging 17.6± 9.6 µg C m−3) and accounted for 26± 5 % of
total PM2.5 mass. The corresponding mass concentrations of

Figure 2. Diurnal trends in average total PM1 mass and concentra-
tions of non-refractory inorganic species measured with the AMS,
average BC measured with the aethalometer, and average wind
speed and direction at Bode on 13 and 16 to 24 April 2015. The
shaded region represents the duration for nighttime filter collection
and the unshaded region represents the duration for daytime filter
collection.

organic matter (OM) were estimated by multiplying OC mass
concentrations by a factor of 1.7 to account for the associ-
ated elements (primarily oxygen, hydrogen, and nitrogen).
The OM : OC conversion factor of 1.7 was obtained from the
AMS measurement and falls towards the urban end of the
range (1.6–2.1) recommended by Turpin and Lim (2001).
OM accounted for an average of 48±9 % of PM2.5 mass. EC
concentrations ranged from 2.3 to 30.8 µg m−3 (averaging
9.0±6.4 µg m−3) and accounted for 13±6 % of PM2.5 mass.
Major sources for OC and EC are discussed in Sect. 3.3.

3.2.3 Inorganic ions in PM, trace gases, and
gas–aerosol phase partitioning

The major ionic components of PM2.5 were sulfate, ammo-
nium, and nitrate accounting for 16±4 %, 9±3 %, and 4±2 %
of PM2.5 and 11±3 %, 6±2 %, and 3±2 % of PM10, respec-
tively (Table S3). Ratios of these ions indicate that secondary
inorganic compounds including ammonium sulfate and am-
monium nitrate were important components of PM (Carrico
et al., 2003). The relative abundances of these species in the
Kathmandu Valley are within the ranges of those reported
previously (Shakya et al., 2008, 2010, 2017a).

Large diel variability in temperature and RH drove cor-
responding variability in aerosol LWC, which contributed
to diel variability in the phase partitioning of NH3/NH+4 ,
HNO3/NO−3 , and HCl/Cl− and aerosol solution pH (Fig. 3).
In contrast, under acidic conditions (as existed during this
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campaign; see below) and in the presence of high aerosol
surface area, SO2 and H2SO4 are relatively insensitive to the
variability of aerosol LWC and solution pH. Under these con-
ditions, virtually all SO2 partitions into the gas phase and vir-
tually all H2SO4 partitions into the particulate phase. Conse-
quently, the phase partitioning of oxidized S (Fig. 3f) can be
interpreted without complications introduced by correspond-
ing phase changes in response to variable LWC and pH.

Both SO2 and particulate SO2−
4 were systematically higher

at night and lower during the daytime (Table 4, Fig. 3f). The
average concentration of particulate SO2−

4 measured with the
AMS followed a similar day–night trend, with peak concen-
trations occurring around 08:00 local time (Fig. 2). The cor-
responding total oxidized S (SO2+ particulate SO2−

4 ) dur-
ing daytime versus nighttime (Table 4) typically differed by
factors of 2 to 5. If the photochemical oxidation of SO2
to H2SO4 had contributed significantly to the diel variabil-
ity in SO2, SO2 and particulate SO2−

4 would have been an-
ticorrelated, which was not the case. These results imply
that diel variability in atmospheric dynamics (wind velocity,
boundary layer depth, and transport of chemically distinct air
masses within the valley, such as air masses with brick kiln
influence at night) were major drivers of the observed vari-
ability in both species as discussed in Sect. 3.2.1.

Total NH3 (NH3+ particulate NH+4 ) exhibited a diel pat-
tern similar to that of oxidized S (Table 4, Fig. 3c) al-
though relative day–night differences were proportionally
smaller (typically less than a factor of 2). Day–night dif-
ferences in total NO3 (HNO3+ particulate NO−3 ) and total
Cl (HClcalc+ particulate Cl−) (Table 4, Fig. 3d and e, re-
spectively) were somewhat more variable but also tended
to be higher at night than during the day. Taken together,
the above results support the hypothesis that the transport
of chemically distinct air masses from different source re-
gions during daytime versus nighttime was a major factor
that drove diel variability in the composition of the multi-
phase gas–aerosol system at Bode. Concentrations of Na+

(in nmol m−3) associated with PM2.5 (median – 4.0, range
– undetectable to 19.0) and PM10 (median – 8.7, range –
undetectable to 40.9) were typically much lower than those
of particulate Cl− and total Cl (Fig. 3e). These relationships
indicate that, in contrast to some other continental regions
(e.g., Young et al., 2013; Jordan et al., 2016), refractory
NaCl emitted from crustal and/or marine sources was not the
primary source for particulate and volatile Cl at Bode. In-
stead, total Cl (HClcalc+ particulate Cl−) showed high cor-
relation with potassium (r = 0.91, p<0.001) and total NH3
(NH3+ particulate NH+4 ) (r = 0.78, p<0.001), suggesting
their co-emission from biomass burning (Jayarathne et al.,
2018; Keene et al., 2006; Sheesley et al., 2003), brick kilns
located within the Kathmandu Valley that impact air masses
arriving at Bode at night (Stockwell et al., 2016), and/or
garbage burning (Jayarathne et al., 2018).

Concentrations of volatile inorganic Br (including HBr,
Br2, HOBr, BrCl, and BrO) ranged from < 0.54 to

1.18 nmol m−3 and were greater than the detection limit in 8
of 27 samples (Fig. 3g). Seven of the eight detectable mixing
ratios were during nighttime sampling intervals, which sug-
gests a possible diel cycle in multiphase chemical processing
of volatile Br and/or systematic variability as a function of
transport from different source regions. Br− was not mea-
sured in aerosol samples, so the corresponding variability of
particulate and total (volatile+ particulate) Br is not known.
Possible sources for reactive Br in the region include biomass
burning and fossil fuel combustion (Sander et al., 2003).

Concentrations of volatile and particulate inorganic Cl
measured at Bode fell within the ranges of those mea-
sured in polluted continental air (Young et al., 2013). In
addition, concentrations of volatile inorganic Br and Cl at
Bode fell within the ranges of those measured in marine air
(Keene et al., 2009; Sander et al., 2003). The lack of rele-
vant ancillary measurements during the period of the cam-
paign precluded a quantitative assessment of the potential
impacts of reactive halogens on regional air quality in the
Kathmandu Valley. However, drawing on related measure-
ments and model calculations elsewhere (Keene et al., 1999,
2009; Long et al., 2014; Sander et al., 2003; Young et al.,
2013), our results in conjunction with the presence of acidic,
deliquesced aerosol support the hypothesis that multiphase
halogen-radical chemistry involving both Br and Cl impacted
air quality via two pathways. (1) At high NOx mixing ra-
tios in polluted continental regions, the nocturnal reaction
of N2O5 with particulate Cl− produces significant ClNO2,
which photolyzes following sunrise yielding a burst of Cl
atoms (e.g., Brown et al., 2013). ClNO2 is also a noctur-
nal reservoir for NOx and thereby slows NOx destruction
at night. (2) The scavenging of volatile HOCl and HOBr
into acidic aerosol solution and their subsequent reaction
with Cl− and Br− produces Cl2, BrCl, and Br2, which sub-
sequently volatilize to the gas phase and photolyze during
daytime yielding atomic Br and additional atomic Cl (e.g.,
Keene et al., 2009). These autocatalytic reactions proceed in
both the light and dark and would enhance halogen activa-
tion at night and sustain halogen-radical chemistry during
daytime relative to predictions based on ClNO2 activation
alone. The associated production and scavenging of halo-
gen nitrates also accelerates the destruction of NOx . Cl and
Br radicals contribute to the oxidation of hydrocarbons and,
together with related reactions that impact NOx cycling, per-
turb HOx–NOx photochemistry relative to that predicted in
the absence of reactions involving halogens.

Particulate calcium, magnesium, and fluoride in the Hi-
malayan region originate primarily from the deflation of sur-
face soils (Carrico et al., 2003). Contributions of these ions
to PM10 mass were statistically greater (p = 0.03, 0.01, and
< 0.001, respectively) relative to those to PM2.5 (Table S3)
consistent with results reported previously by Hinds (2012).
Heavy vehicular traffic on the many unpaved roads in the val-
ley and to some extent windblown soil dust from the open
agriculture fields (by relatively stronger winds in the pre-
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Figure 3. (a) Temperature and RH; (b) liquid water content (LWC) of PM2.5 and PM10; (c) gas-phase NH3 and particulate NH+4 associated
with PM2.5 and PM10; (d) gas-phase HNO3 and particulate NO−3 associated with PM2.5 and PM10; (e) gas-phase HClcalc and particulate Cl−

associated with PM2.5 and PM10; (f) gas-phase SO2 and particulate SO2−
4 associated with PM2.5 and PM10; (g) detectable concentrations of

volatile inorganic Br; (h) equilibrium aerosol solution pH calculated from the measured gas–aerosol phase partitioning of NH3 with PM2.5
and PM10 and HNO3 with PM2.5 and PM10. Vertical grid lines denote local midnight.

monsoon season) likely contributed to regional dust emis-
sions. This speculation is supported by the significantly
higher concentrations of the calcium and magnesium asso-
ciated with PM10 during daytime (p = 0.049 and 0.005, re-
spectively) when vehicular traffic is higher relative to night.
The long-distance transport of dust from arid regions upwind
may also contribute to that produced locally.

3.2.4 Aerosol pH

Aerosol solution pH, inferred from the phase partitioning of
NH3 and HNO3, ranged from 2.2 to 3.3, and most paired es-
timates for the same sampling interval agreed within±0.1 to
±0.3 pH units (Fig. 3h). Solution pH estimated from the par-
titioning of a given gas with PM10 was greater than those for
PM2.5 by < 0.01 to about 0.3 pH units. These results indicate
that particles larger than 2.5 µm diameter were typically less
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Table 4. Mean (± standard deviation) concentrations of reactive gases, particulate phase inorganic ions, and percent of these species in gas
phase. Total concentrations correspond to the sum of gas phase and PM10.

Gas phase (nmol m−3) PM2.5 (nmol m−3) PM10 (nmol m−3) Total (nmol m−3) % in gas phase

Day Night Day Night Day Night Day Night Day Night Daily

NH3 or NH+4 961 (173) 969 (228) 272 (40) 533 (223) 290 (55) 610 (251) 1200 (155) 1540 (410) 76 (5) 61 (7) 68 (10)
HNO3 or NO−3 23 (14) 1.7 (0.9) 34 (22) 64 (38) 89 (60) 122 (60) 114 (65) 124 (60) 23 (12) 2 (1) 12 (14)
HCl or Cl− 47 (43) 24 (24) 7.0 (8.0) 91 (63) 17 (14) 113 (67) 43 (31) 130 (76) 65 (33) 15 (17) 35 (34)
SO2 or SO2−

4 354 (198) 1023 (344) 97 (16) 159 (55) 115 (19) 181 (57) 405 (164) 1180 (387) 67 (14) 84 (5) 76 (13)
Br∗ 0.4 (0.1) 0.7 (0.3) – – – – – – NA NA NA

∗ Bromine concentrations below detection limit were replaced with the limit of detection (LOD) /
√

2 in calculating average and standard deviation.

acidic than smaller particles, which is consistent with size-
resolved acidities characterized in other continental regions
(e.g., Young et al., 2013). These results are also consistent
with the proportionately greater divergence between concen-
trations of NO−3 (Fig. 3d) and Cl− (Fig. 3e) associated with
PM10 versus PM2.5 relative to those for NH+4 (Fig. 3c). Based
on their thermodynamic properties, HNO3 and HCl partition
preferentially with less acidic particles, whereas NH3 parti-
tions preferentially with the more acidic particles.

3.2.5 PM2.5 molecular markers and secondary organic
aerosol tracers

Organic species, particularly molecular markers and SOA
tracers (Table 1), were measured to identify sources of OC
(Table 5). The identified sources include biomass burning,
food cooking, dung burning, garbage burning, coal combus-
tion, fossil fuel use, and secondary aerosol from both bio-
genic and anthropogenic sources.

Herein, we present the first measurements of 1,3,5-
triphenylbenzene (TPB) in Nepal, which is a unique molec-
ular marker of plastic burning. This tracer is associated with
the combustion of garbage (Jayarathne et al., 2018; Simoneit
et al., 2005), which occurs widely in Nepal (Wiedinmyer et
al., 2014). Open garbage or trash burning is recognized as
a common method to dispose of waste materials in Nepal
and other South Asian countries (Wiedinmyer et al., 2014).
Garbage contains plastic items (e.g., bags, packaging, food
containers) in addition to food waste, paper, cardboard, foil
packaging, and other items (Stockwell et al., 2016). TPB
was detected in every sample (Fig. 4a). Ratios of TPB to
OC concentrations during daytime and nighttime (0.04±
0.02 ng µgOC−1) suggest that garbage burning contributed
generally consistent fractions of PM2.5 OC. In addition, TPB
was significantly correlated with the biomass burning marker
levoglucosan (r = 0.66, p<0.001), which suggests that both
tracers may have been emitted during the co-combustion of
plastic materials and biomass including cellulose-containing
food waste, paper, and cardboard in garbage.

Additional molecular markers indicated the presence of
biomass burning, coal combustion, fossil fuel use, dung
burning, and food cooking. Levoglucosan, a biomass burn-

ing marker, was observed throughout the sampling period
(Fig. 4b). Biomass burning emissions that impact the Kath-
mandu Valley during April include local biomass combus-
tion in brick kilns and food cooking (Pariyar et al., 2013), as
well as garden waste burning, agro-residue burning, and re-
gional wild fires (Khanal, 2015; Stone et al., 2010). Picene, a
marker of coal combustion (Oros and Simoneit, 2000) and
tire burning (Downard et al., 2015), was consistently de-
tected (Fig. 4c). Picene varied diurnally, with higher con-
centrations at nighttime (0.25± 0.13 ng µgOC−1) compared
to daytime (0.14± 0.16 ng µgOC−1), consistent with south-
easterly winds at night that transported emissions from coal-
fired brick kilns to Bode. Nine hopanes were identified, in-
dicating fossil fuel influences on PM2.5 in the form of coal
burning and/or vehicle emissions (Fig. 4d). Stigmastanol, a
unique molecular marker of cow dung burning (Sheesley et
al., 2003), was detected in about 67 % of the samples (Fig. 4e,
Table 5). Cholesterol, which is emitted from both dung burn-
ing (Sheesley et al., 2003) as well as food cooking (Rogge
et al., 1991), was detected in 93 % samples (Fig. 4f). Choles-
terol and stigmastanol exhibited distinct temporal variabili-
ties, the former having higher OC-normalized concentrations
during nighttime and the latter having higher OC-normalized
concentrations during daytime. This suggests that these two
were emitted from different sources, i.e., cholesterol from
food cooking.

Concentrations of molecular markers in Bode measured
in this study are compared to a more rural site at Godawari,
on the outskirts of the Kathmandu Valley during April 2006
(Stone et al., 2010). Godawari is located ∼ 11 km south of
Bode at the base of the western face of a mountain (Phul-
choki) that rises ∼ 1200 m above the valley floor, with very
low population density nearby. While Bode experiences af-
ternoon westerlies that cross the valley from the western to
the eastern passes, the flow in Godawari is dominated by the
up- and downslope flows generated by Mt. Phulchoki. Higher
concentrations of most markers at Bode, including levoglu-
cosan (by a factor of 5), picene (by a factor of 23), and
17β(H)-21α(H)-30-norhopane (by a factor of 13) indicate
the larger impact of biomass burning and fossil fuel com-
bustion at this site, compared to Godawari, likely due to the
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Table 5. PM2.5 mass concentrations, OC, EC, inorganic ions, and organic species measured at Bode in the Kathmandu Valley.

Overall Daytime (08:00–17:30) Nighttime (18:00–07:30)

Species Mean ± SD Median Mean ±SD Range Mean ± SD Range

PM2.5 mass (µg m−3) 68.2± 34.7 65.8 54.2± 18.0 30.0–94.7 83.3± 42.3 32.9–207

OC (µg C m−3) 17.6± 9.6 15.7 14.2± 5.8 7.9–30.7 20.8± 11.4 8.7–57.3

EC (µg C m−3) 9.0± 6.4 7.3 5.6± 3.4 2.3–12.8 12.2± 7.0 4.4–30.8

Inorganic ions (µg m−3)

Ammonium 5.8± 2.8 5.7 3.9± 0.9 2.4–5.8 7.6± 2.9 3.0–15.6
Sodium 0.10± 0.09 0.08 0.10± 0.10 < 0.02–0.36 0.10± 0.07 < 0.02–0.23
Potassium 0.63± 0.30 0.59 0.53± 0.17 0.28–0.80 0.72± 0.36 0.22–1.8
Calcium 0.65± 0.50 0.51 0.73± 0.63 0.03–1.64 0.56± 0.35 0.10–1.07
Magnesium 0.04± 0.03 0.04 0.05± 0.04 < 0.02–0.11 0.03± 0.02 < 0.02–0.05
Nitrate 2.7± 1.7 2.5 2.3± 1.7 0.1–6.2 3.1± 1.7 0.4–8.0
Sulfate 10.2± 3.6 9.7 8.1± 2.0 5.6–13.0 12.2± 3.8 5.6–22.1
Chloride 1.52± 1.67 0.76 0.281± 0.281 0.003–0.757 2.67± 1.60 0.641–6.70
Fluoride 0.05± 0.02 0.05 0.04± 0.02 < 0.02–0.08 0.04± 0.02 < 0.02–0.10

Organic species (ng m−3)

Levoglucosan 1230± 1154 912 843± 424 328–1671 1588± 1486 425–5910
Cholesterol 2.9± 6.6 1.1 1.0± 1.4 < 0.1–4.6 3.9± 8.3 < 0.1–32.3
Stigmasterol 3.4± 3.1 2.3 3.0± 3.6 < 0.1–13.0 3.7± 2.7 0.9–8.8
β-Sitosterol 9.4± 10.1 7.0 6.1± 7.2 0.03–26.2 12.6± 11.6 3.5–46.8
Campesterol 2.8± 4.5 1.8 1.1± 1.9 0.2–6.5 4.5± 5.5 0.4–20.0
Coprostanol 0.6± 1.3 0.40 0.4± 0.4 < 0.4–1.6 0.9± 1.8 < 0.4–6.7
Stigmastanol 1.0± 0.8 0.90 0.9± 0.8 < 0.4–2.5 1.2± 0.7 < 0.4–2.7

Polycyclic aromatic hydrocarbons (PAHs)

Phenanthrene 1.1± 1.3 0.70 0.56± 0.38 0.11–1.35 1.70± 1.6 0.44–6.37
Anthracene 0.32± 0.36 0.17 0.20± 0.18 0.04–0.62 0.43± 0.45 0.12–1.64
Fluoranthene 3.9± 4.4 2.5 1.72± 1.05 0.47–3.95 5.95± 5.26 1.61–20.4
Pyrene 4.2± 4.8 2.6 1.84± 1.13 0.46–4.30 6.39± 5.86 1.78–22.8
Methylfluoranthene 1.1± 1.2 0.91 0.57± 0.35 0.11–1.30 1.66± 1.43 0.41–5.15
Benzo(ghi)fluoranthene 4.3± 4.9 3.1 1.74± 1.03 0.53–4.08 6.73± 5.86 2.27–21.2
Cyclopenta(cd)pyrene 1.7± 1.9 1.3 0.85± 0.50 0.28–1.70 2.55± 2.27 0.86–8.40
Benz(a)anthracene 3.2± 3.9 2.0 1.15± 0.70 0.35–2.75 5.10± 4.65 1.42–16.0
Chrysene 4.9± 5.4 3.0 1.98± 1.044 0.78–4.55 7.56± 6.42 2.28–23.0
1-Methylchrysene 0.64± 0.76 0.41 0.21± 0.17 < 0.03–0.59 1.05± 0.87 0.26–3.35
Retene 0.28± 0.83 0.06 0.08± 0.02 < 0.1–0.15 0.47± 1.14 < 0.1–4.38
Benzo(b)fluoranthene 5.8± 6.2 4.3 2.69± 1.67 0.67–6.59 8.60± 7.53 2.46–27.1
Benzo(k)fluoranthene 6.0± 6.2 4.1 2.37± 1.59 0.55–6.52 9.35± 7.10 3.43–26.5
Benzo(j)fluoranthene 1.2± 1.2 1.0 0.50± 0.34 0.10–1.23 1.85± 1.36 0.65–5.79
Benzo(e)pyrene 4.5± 4.4 3.4 2.02± 1.10 0.73–4.10 6.79± 5.10 2.20–19.9
Benzo(a)pyrene 4.7± 5.4 3.1 1.98± 1.19 0.64–4.71 7.20± 6.59 2.23–24.7
Perylene 0.9± 0.9 0.76 0.46± 0.27 0.19–1.08 1.28± 1.08 0.43–4.19
Indeno(1,2,3-cd)pyrene 8.9± 8.9 6.5 3.94± 2.71 1.10–10.27 13.54± 10.17 4.67–41.4
Benzo(ghi)perylene 6.6± 6.3 5.0 3.32± 1.69 1.26–6.96 9.59± 7.54 3.47–28.7
Dibenz(ah)anthracene 1.4± 1.4 1.2 0.76± 0.52 0.16–1.81 1.96± 1.73 0.66–6.85
Picene 3.5± 3.9 2.6 1.41± 0.92 0.34–3.12 5.47± 4.52 1.78–18.5
1,3,5-Triphenylbenzene 0.79± 0.63 0.62 0.68± 0.70 0.25–2.94 0.89± 0.56 0.28–2.31∑

PAHs 69.9± 73.0 43.7 31.0± 17.8 10.3–70.6 106± 87 36.2–313

Hopanes

17α(H)-22,29,30-trisnorhopane 0.22± 0.23 0.17 0.15± 0.14 < 0.02–0.56 0.29± 0.26 0.06–1.13
17β(H)-21α(H)-30-norhopane 0.40± 0.38 0.28 0.19± 0.13 < 0.02–0.55 0.59± 0.43 0.09–1.90
17α(H)-21β(H)-hopane 0.34± 0.38 0.25 0.26± 0.20 0.02–0.63 0.43± 0.49 0.06–2.00∑

Hopanes 0.95± 0.93 0.72 0.56± 0.32 0.02–1.36 1.31± 1.17 0.24–5.03

SOA tracers

cis-Pinonic acid 4.5± 1.9 4.4 6.1± 1.3 4.4–7.9 3.0± 0.8 2.0–4.6
β-Caryophyllinic acid 18.7± 9.4 15.7 17.3± 8.0 10.0–40.0 19.9± 12.1 6.7–51.7
Phthalic acid 60.8± 22.2 60.1 69.6± 20.7 45.5–113 52.7± 21.1 28.2–91.9
4-Methylphthalic acid 9.3± 4.2 8.9 11.7± 3.7 8.1–19.2 7.1± 3.3 3.5–13.7

SD: standard deviation.
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Figure 4. Daytime and nighttime concentrations of (a) 1,3,5-
triphenylbenzene, (b) levoglucosan, (c) picene, (d) 17α(H)-
22,29,30-trisnorhopane in red, 17β(H)-21α(H)-30-norhopane in
light green, and 17α(H)-21β(H)-hopane in yellow, (e) stigmastanol,
(f) cholesterol, and (g) cis-pinonic acid in PM2.5 in the Kathmandu
Valley, Nepal. Error bars represent analytical uncertainties propa-
gated from measurements. Measurements below the instrumental
detection limits are marked as ND.

higher population density and industrial activities. The av-
erage concentration for stigmastanol at Bode (1.02 ng m−3)
was similar to Godawari (0.9 ng m−3) (Stone et al., 2010).
Although dung burning is not common in the Kathmandu
Valley and its outskirts, dung is a more widely used fuel in
rural areas of southern Nepal and India. Thus, it is expected
that most of the dung burning tracers observed at Bode were
primarily transported from other regions.

SOA produced from the oxidation of the biogenic pre-
cursors (monoterpenes and sesquiterpenes) were indicated
by cis-pinonic acid and β-caryophyllinic acid, respectively
(Fig. 4g, Table 5). OC normalized concentrations of cis-
pinonic acid (ratio of cis-pinonic acid to total OC associ-
ated with PM2.5) were significantly higher during daytime
compared to nighttime (p<0.001), which is consistent with
the photochemical production of cis-pinonic acid during day-
time (Claeys et al., 2007; Kleindienst et al., 2007) but may
also reflect relative differences in emissions of precursors for
cis-pinonic acid in air mass source regions upwind of the
site during daytime versus nighttime. In contrast, isoprene
concentrations during the study period were low (Table 2)
and corresponding concentrations of methyltetrols (tracers
of SOA produced from the oxidation of isoprene) were be-
low detection limits. These results are consistent with the
expectation of low isoprene emissions from recently emer-
gent leaves coupled with relatively low temperatures as dis-
cussed above (Kuzma and Fall, 1993; Lewandowski et al.,
2008; Monson et al., 1992; Shen et al., 2015). The chro-
matographic data suggested the presence of 2-methylglyceric
acid, an isoprene SOA tracer generated under high-NOx con-
ditions; however, this species could not be semiquantified
due to the low recovery (< 10 %) of structurally similar hy-
droxy acids from the solvent extraction. Nonetheless, these
results suggest that isoprene-derived SOA in the Kathmandu
Valley has a larger relative contribution from high-NOx re-
actions compared to low NOx . The relative distribution of
high- and low-NOx isoprene SOA tracers should be evalu-
ated in future studies.

Phthalic acid and 4-methylphthalic acid (Table 5)
are photooxidation products of naphthalene and methyl-
naphthalene, respectively (Kleindienst et al., 2012). These
species were also reported to be observed from vehicle emis-
sion (Kawamura and Kaplan, 1987) but may be used as an-
thropogenic SOA tracers in an absence of correlation with
primary source tracers (e.g., hopane) (Al-Naiema and Stone,
2017). Phthalic acid and 4-methylphthalic acid did not cor-
relate significantly with hopanes (r = 0.29 and 0.25, respec-
tively) and EC (r = 0.16 and 0.12, respectively), suggesting
that primary combustion was not their major source. Both
species were present in significantly higher OC normalized
concentrations during the daytime (p<0.001). The daytime
maxima may be due to photochemical production (Klein-
dienst et al., 2012) and/or the transport of air masses that
passed over Kathmandu during the daytime.

3.3 Chemical mass balance source apportionment
modeling of PM2.5 OC

3.3.1 Base case model result

CMB modeling was used to apportion PM2.5 OC to five pri-
mary sources (garbage burning, biomass burning inclusive of
open burning and biomass-fueled cooking stoves, gasoline
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Figure 5. Apportionment of primary and secondary sources for
PM2.5 OC based on CMB modeling. Values in parentheses are av-
erage percent contributions by the corresponding sources. Missing
primary sources on 13-N and 18-D of April are marked with stars
(see Sect. 3.5).

and diesel engines, coal combustion, and vegetative detritus)
and four secondary sources (monoterpene SOA, sesquiter-
pene SOA, naphthalene SOA, and methylnaphthalene SOA).
The “base case” results represent the best estimate of the
source contributions to OC in this study and utilize the most
representative source profiles available (see Sect. 2.11). Of
those that were resolvable, primary sources contributed an
average of 60±16 % of OC and secondary sources accounted
for 15± 5 % of OC, while the remaining 25± 16 % of OC
was not apportioned and is referred to as “other sources”
(Fig. 5, Table 6). Other sources may include contributions
from cooking with non-biomass fuels (e.g., LPG), mixed in-
dustrial emissions, dust emissions, and other uncharacterized
primary and secondary sources that could not be apportioned
because marker species were not measured (e.g., Si, Al in
the case of dust), source profiles are not available (e.g., for
local industry), or available profiles are considered unsuit-
able (e.g., for food cooking, given the inherent variability of
this source). Other sources may also include OC from ap-
portioned sources, in the case that they were underestimated.
The CMB model did not converge for samples collected on
the night of 13 April (13-N) and day of 18 April (18-D), and
thus primary source contributions are not reported for these
samples.

The garbage burning contribution to PM2.5 OC ranged
from 11 % to 27 % and averaged 18± 4 %. These results in-
dicate that garbage burning OC is a major source of PM2.5
in the Kathmandu Valley. To our knowledge, this is the first
study to apportion PM2.5 OC to garbage burning source
based on a unique molecular marker (TPB) in CMB. A tracer
based estimation of garbage burning contributions to PM2.5
in the Mexico City Metropolitan Area using antimony (Sb) as
a tracer indicated that garbage burning contributed ∼ 28 %
of PM2.5 (Christian et al., 2010). Hodzic et al. (2012) esti-
mated that organic aerosols in the Mexico City valley could

be reduced by 2 %–40 % by complete mitigation of garbage
burning. The large estimates of garbage burning contribu-
tions to PM2.5 OC and PM2.5 in Kathmandu and Mexico City
demonstrate the importance of this source to local air quality
in heavily polluted urban air. Further, this source should be
considered in source apportionment in regions where open
garbage burning is a common practice.

Biomass burning contributed 5 % to 43 % of PM2.5 OC,
averaging 17± 10 %. This estimate is expected to encom-
pass a wide range of biomass burning sources, including bio-
fuel and open burning of biomass. Biomass is widely used
as a fuel for household cooking and heating (Pattanayak et
al., 2005; Pokhrel et al., 2015; Yevich and Logan, 2003)
and in brick kilns (Maithel et al., 2012; Stockwell et al.,
2016). In addition, the burning of agricultural residue and
wild fires commonly occur in April in Nepal (Khanal, 2015).
The source profile used for biomass burning in Nepal was
based on the characterization of emissions from an open
biomass fire of twigs and dung (Jayarathne et al., 2018) to re-
flect that molecular markers for wood burning (levoglucosan)
and dung burning (stigmastanol) were present. Vegetative de-
tritus, which is waxy material produced from the abrasion of
plant leaves, contributed an average of 1.6± 0.9 % of PM2.5
OC and is sometimes associated with biomass burning emis-
sions, due to lofted vegetative matter during combustion. A
small contribution from this source is consistent with prior
studies in the region (Stone et al., 2010).

Contributions from fossil fuel combustion to PM2.5 OC in-
cluded emissions from gasoline and diesel engines and coal
combustion. More than 1 million vehicles (Mahata et al.,
2017) and approximately 0.25 million power generators fu-
eled by gasoline and diesel operate within the valley (Ma-
hata et al., 2017). The combined OC contributions to PM2.5
OC from these sources ranged from 5 % to 48 % and aver-
aged 18± 9 % (Table 6). These two sources are reported to-
gether because they both contribute to evaporative emissions
of motor oil. Coal combustion contributed 1 % to 10 % and
averaged 5.0± 2.3 % of PM2.5 OC. Coal combustion con-
tributions to PM2.5 OC at Bode were significantly greater
during nighttime periods (5.9± 2.3 %) compared to daytime
(3.9± 2.0 %, p = 0.04). As discussed above, these diel dif-
ferences reflect the proximity of coal-fired brick kilns lo-
cated to the south and east of the sampling site coupled
with the transport of emissions via the southeasterly winds
at night. Relative contributions of coal combustion to PM2.5
(0.8± 0.4 µgC m−3) in the Kathmandu Valley are about 4
times greater than those at a more rural location in Nepal
(Stone et al., 2010). Brick kilns operate only in the dry sea-
son in Nepal and not during the summer monsoon (rainy)
season, making this a seasonal PM2.5 source.

Naphthalene-derived secondary organic carbon (SOC)
was the largest identified SOA source, contributing 10± 4 %
of OC, while methylnaphthalene-derived SOC contributed
0.3±0.1 %. Average contributions of biogenic SOC to PM2.5
OC ranged from 0.03 % to 0.29 % for monoterpenes and
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Table 6. Relative primary and secondary source contributions to PM2.5 OC during day and night periods in the Kathmandu Valley. Source
contributions during day and night periods were compared and p values < 0.05 (marked by ∗) indicate significant differences at the 95 %
confidence interval.

Sources Overall (%) Day (%) Night (%) p value

Garbage burning 18.1± 4.5 19.0± 4.2 17.2± 4.8 0.34
Open biomass burning 17.2± 9.5 17.3± 9.6 17.1± 9.8 0.96
Gasoline and diesel engines 18.0± 9.2 14.0± 7.3 21.8± 9.5 0.03∗

Coal combustion 5.0± 2.3 4.0± 2.0 5.9± 2.3 0.04∗

Vegetative detritus 1.6± 0.9 1.8± 1.1 1.3± 0.6 0.12
α-Pinene SOC 0.13± 0.07 0.19± 0.05 0.07± 0.03 < 0.001∗

β-Caryophyllene SOC 4.6± 1.5 5.3± 1.6 4.0± 1.1 0.05
Naphthalene SOC 9.8± 4.0 13.0± 3.0 7.0± 2.5 < 0.001∗

Methylnaphthalene SOC 0.25± 0.12 0.36± 0.08 0.15± 0.05 < 0.001∗

Other OC 25.4± 16.6 25.2± 13.9 25.6± 18.0 0.94

1.5 % to 8.3 % for sesquiterpenes. As noted above, isoprene
SOA tracers were not quantified. Relatively lower contri-
butions from biogenic SOC during winter and post-winter
months were reported in previous studies in Nepal (Stone
et al., 2010), the southeastern US (Kleindienst et al., 2007),
and the midwestern US (Lewandowski et al., 2008). Thus,
the SOA in the Kathmandu Valley during the pre-monsoon
season was dominated by anthropogenic influences with a
∼ 70 % contribution to total SOC. Naphthalene and methyl-
naphthalene were reported to mainly come from diesel ex-
haust (Schauer et al., 1999) and industrial emissions and
biomass burning (Jia and Batterman, 2010), indicating that
reduction in emissions from these sources would reduce an-
thropogenic SOA production. It is likely that other SOA
sources (e.g., those associated with monoaromatic VOCs,
biomass burning, and other SOA precursors) that were not
characterized in this study also contributed to PM2.5 OC.
Contributions from all four SOA sources to PM2.5 OC were
significantly greater (p<0.001) during daytime (18± 4 %)
relative to nighttime (11± 3 %) (Table 6). These results are
consistent with those reported in other studies (Kleindienst
et al., 2007; Plewka et al., 2006; Xu et al., 2015) and are at-
tributed to photochemical production from precursors during
daytime and/or regional variability in emissions of precur-
sors in upwind source regions for air transport to Bode dur-
ing daytime versus nighttime. The low source contribution
of biogenic relative to anthropogenic SOC is consistent with
the low biogenic VOC levels (Table 2). Based on results from
the SusKat-ABC campaign, oxidation products of aromatic
VOCs (most importantly benzene) probably also contributed
substantially to SOC (Sarkar et al., 2017). In this study, the
uncharacterized contributions from aromatics would be clas-
sified as other or unapportioned OC.

3.3.2 Sensitivity to garbage and biomass burning
profiles

The sensitivity of the CMB source apportionment results to
the input source profiles was examined by systematically
varying either the garbage burning or biomass burning source
profiles while keeping other profiles constant, following prior
studies (Sheesley et al., 2003; Stone et al., 2010). The sensi-
tivity test results are summarized in Fig. 6, and the model
performance metrics are summarized in Fig. S2.

Two garbage burning profiles were examined from a sin-
gle fire of mixed-waste burning (NAMaSTE fire no. 14; Ja-
yarathne et al., 2018). Profile A (the base case profile) corre-
sponds to more smoldering conditions with a modified com-
bustion efficiency (MCE) of 0.89, and profile B correspond-
ing to a mixture of flaming and smoldering combustion with
an MCE of 0.93 (Jayarathne et al., 2018). The mixed waste
included food waste, paper, plastic bags, cloth, diapers, and
rubber shoes. These garbage materials were damp with the
previous night’s rainfall and were rekindled with newspaper
on occasions (Stockwell et al., 2016). Switching from pro-
file A to B increased the amount of PM2.5 OC apportioned
to garbage burning by a factor of 3.0 (Fig. 6a) to 46± 13 %
of OC, indicating that the model was highly sensitive to the
garbage burning profile. The model result from profile B, on
some days, caused the CMB apportioned OC to exceed the
observed OC. Garbage tends to be burned inefficiently, and
it is possible that this source contributes to more OC esti-
mated in the base case scenario and may account for much
of the unapportioned OC. Given its potential contributions to
PM2.5, additional sampling and the characterization of this
source are warranted.

Burning of wood, dung, and crop residue is a major en-
ergy source of households in South Asia, while crop residue
is also burned in fields (Saud et al., 2011; Yevich and Logan,
2003). An open biomass fire of twigs and dung was used as
the base case biomass profile (NAMaSTE fire no. 39) (Ja-
yarathne et al., 2018). Four other biomass burning profiles,
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Figure 6. Sensitivity of CMB model results to the input source pro-
files: (a) sensitivity of garbage burning contributions to PM2.5 OC
to the garbage burning profile and (b) sensitivity of biomass burning
contributions to PM2.5 OC to biomass burning profiles.

consisting of a one-pot traditional mud cooking stove fueled
with hardwood (fire no. 37), twigs (fire no. 38), dung (fire
no. 40), hardwood and dung (fire no. 41), were examined,
and the OC apportioned to biomass burning changed by fac-
tors of 0.4–1.9 (Fig. 6b). The lowest estimate corresponded to
wood- and dung-fueled mud cooking stoves and the highest
estimate corresponded to a wood-fueled mud cooking stove,
with 15±8 % and 39±16 % OC apportioned to biomass burn-
ing (primarily cooking), respectively. The agreement of the
sensitivity tests with the base case results being within a fac-
tor of 2 indicates a relatively stable CMB apportionment of
biomass burning to OC. Because some of the sensitivity tests
predict a higher biomass burning contribution to OC than the
base case result, this source may contribute to some of the
unapportioned OC in the base case result.

The base case CMB model apportioned PM2.5 EC to five
primary sources (garbage burning, biomass burning, gasoline
and diesel engines, coal combustion, and vegetative detritus).
The largest contributor of EC was gasoline and diesel en-
gines (89± 7 %), with smaller contributions from biomass
burning (7± 7 %), coal combustion (3± 2 %), garbage burn-
ing (1±1 %), and vegetative detritus (0.1±0.1 %) (Fig. S3).
EC apportionment was highly sensitive to different biomass
and garbage profiles (Fig. S4) with the EC apportioned to
garbage burning varying by a factor of 10 and EC appor-
tioned to biomass burning varying by a factor of 0.2–3.4. Due
to the large model sensitivity to the selected profile, the EC
apportionment is not considered to be as robust as the OC ap-
portionment and is subject to larger uncertainties. To better
constrain EC source contributions, additional measurements
(i.e., radiocarbon) would be needed.

3.4 PM composition and sources during Bisket Jatra,
the local New Year festival

Bisket Jatra, a 9 d festival from 10 to 18 April, celebrated the
start of the local New Year (14 April) in the Vikram Sam-
vat calendar. Festivities were held in Bhaktapur, located in
the southeast corner of the Kathmandu Valley. Two main
events occurred on the afternoons and evenings of 11 and
13 April that attracted a large number of spectators, increased
vehicle traffic in the surrounding area, and involved cook-
ing food both indoors and outdoors. The prevailing south-
easterly winds during nighttime would have transported air
masses from Bhaktapur to Bode. The maximum concen-
trations of PM2.5 and PM10 measured over the campaign
(207 and 294 µg m−3, respectively) were during night of
11 April (Fig. 1). The PM10 concentration on the night of
13 April (145 µg m−3) was also relatively high compared to
other sampling periods; the corresponding PM2.5 concen-
tration was not available due to filter damage. OC and EC
concentrations were about 3 times higher on 11 April and
2 times higher on 13 April compared to the average values
over the study period. Compared to more typical concentra-
tions based on average values during the study period, on
11 April, levoglucosan was 3 times greater and on 13 April,
levoglucosan, cholesterol, and hopanes were 5, 11, and 5
to 6 times greater, respectively. Similarly, inorganic gases
and other PM2.5 species were elevated on 11 and 13 April
by factors of 2 to 4. The increased emissions from cook-
ing and vehicle traffic associated with the festival were the
most likely sources for the relatively higher concentrations
of these species.

The base case CMB source apportionment on the night
of 11 April indicated that sources contributing to PM2.5 OC
were biomass burning (26±8 %), gasoline and diesel engines
(19± 3 %), garbage burning (12± 4 %), coal combustion
(1.6±0.5 %), vegetative detritus (1.5±0.8 %), monoterpene
SOC (0.03±0.02 %), sesquiterpene SOC (3.1±4.2 %), naph-
thalene SOC (3.7±0.8 %), methylnaphthalene SOC (0.09±
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0.12 %), and other sources (34±15 %). The biomass burning
contribution to PM2.5 OC on the night of 11 April was ap-
proximately 1.5 times higher than the average biomass burn-
ing contribution during the study period. The magnitude of
biomass burning and gasoline and diesel engine contributions
to PM2.5 OC on that night were the highest (15± 4 µgC m−3

and 11± 1 µgC m−3, respectively) among the study period,
which were approximately 5 times and 4 times higher than
the average contributions of these sources over the study
period. The relatively higher contributions from these two
sources on the night of 11 April indicated the influences of
the Bisket Jatra festival on the air quality in the Kathmandu
Valley. In contrast, contributions of other primary sources
(garbage burning, coal combustion, and vegetative detritus)
and SOA to PM2.5 OC were approximately 2 to 3 times lower
on the night of 11 April compared to their study averages.
The CMB model did not converge for the sample collected
on the night of 13 April, likely because the local pollution
sources on that night (e.g., meat cooking indicated by choles-
terol) were not well represented by the source profiles in the
model.

The major sources of PM2.5 OC during 19–24 April af-
ter the 9 d festival were garbage burning (18±4 %), biomass
burning (11± 3 %), and gasoline and diesel engines (15±
6 %). Contributions from biomass burning (23± 10 %) and
gasoline and diesel burning (21± 11 %) were relatively
higher during the 9 d festival while the contribution from
garbage burning (18± 5 %) remained the same. Meanwhile,
the percent contributions from other primary and secondary
sources remained very consistent throughout the whole sam-
pling period.

4 Conclusions

Filter sampling and off-line analyses showed that primary
combustion sources were the major contributors to volatile
and reactive gases, PM2.5, OC, and EC in Kathmandu in mid-
April 2015 (pre-monsoon). Using regionally specific source
profiles when available, major primary OC sources were es-
timated to be garbage burning (18± 5 %), biomass burn-
ing (17± 10 %), and gasoline and diesel engines (18± 9 %).
This study provides the first apportionment of PM to garbage
burning in South Asia, and indicates that it is among the ma-
jor OC sources. However, the model sensitivity tests indicate
that the garbage burning source contribution can vary widely
depending on the input source profile (and increase by up to
a factor of 3), indicating that this source may have an even
larger impact on PM. Garbage burning contributions to PM
may be further constrained with other elemental tracers (e.g.,
Sb), and garbage burning should be further characterized in
terms of its variability with respect to garbage composition
and combustion conditions. The importance of brick kilns to
gases and PM in Kathmandu is demonstrated by the elevated
concentrations of SO2, SO2−

4 , NH3, NH+4 , K+, and Cl− as

well as increased coal burning contributions to PM2.5 OC
at night. Gasoline evaporation and poorly maintained vehi-
cles as well as some unidentified mixed sources were recog-
nized as major contributors of VOCs. Since garbage burn-
ing, biomass burning, vehicle emissions, and coal combus-
tion are, at least in part, controllable, they are potential targets
for emission reductions to reduce ambient PM2.5 in the Kath-
mandu Valley. Mitigation strategies could include improve-
ments to waste management; higher efficiency of biomass
use to reduce PM emissions from cooking, heating, or brick
kilns; and reductions in emissions from vehicles. Control-
ling these combustion sources would also reduce emissions
of VOCs, SO2, NOx , and reactive halogen species that im-
pact air quality through interrelated gas-phase and multi-
phase chemical pathways that produce SOA and contribute
to aerosol acidity.

This study characterized air quality in the Kathmandu Val-
ley for 13 d but was halted prematurely by the Gorkha earth-
quake that struck Nepal on 25 April 2015. A longer period
of study is required to better understand the seasonal vari-
ation in pollution sources and the role of SOA during peri-
ods of higher biogenic VOC levels. Approximately 30 % of
the PM2.5 OC was unapportioned to the sources evaluated
in this model. Likely additional sources include evaporative
emissions from vehicles, local industries, agricultural burn-
ing, and unquantified SOA from monoaromatic species (like
benzene, toluene, etc.) that were measured in ambient air in
this study.

Data availability. Data reports for reactive trace gases, PM2.5, and
PM10 measurements, and CMB model results are freely available
for download at https://doi.org/10.17605/OSF.IO/5HNFK (Islam et
al., 2019). Other gas-phase measurements are reported in Table S2.
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