268 research outputs found

    A radical mediated approach to the stereoselective formal total synthesis of (+)-Sch 642305

    Get PDF
    A formal total synthesis of (+)-Sch-642305 is described. The synthesis, which commenced from a simple chiral synthon (5S)-5-(hydroxymethyl)dihydrofuran-2(3H)-one, employed, as a key step, a radical mediated opening of a chiral epoxy alcohol intermediate with Cp2Ti(III)Cl following an efficient method developed by us earlier. The resultant intermediate radical was intramolecularly trapped by the electron deficient double bond present in the molecule to give rise to its highly functionalized six-membered carbocyclic ring in stereoselective manner

    Incorporating an online interactive video platform to optimize active learning and improve student accountability through educational videos

    Full text link
    Video learning holds an important place in modern STEM classrooms, but more improvements to the learning experience are needed. In order to introduce active-learning components into assignments, questions are often deployed alongside videos. Unfortunately, many students tend to skip videos entirely and solely answer questions, bypassing valuable assigned content. Edpuzzle is an online video-modifying platform that allows instructors to take videos (both instructor-made as well as pre-existing available videos) and insert questions to create active-learning video experiences. Videos can be accessed by students on the Edpuzzle platform or directly from within most learning management systems. As students complete video assignments, instructors can access a variety of progress and performance metrics, use these metrics to identify weak points, and inform instruction. Edpuzzle also has unique student accountability features that allow instructors to choose to prevent students from skipping through videos or questions. Moreover, interactive questions can include chemical structures in the form of images or well-formatted equations or formulas, making Edpuzzle an attractive choice for optimizing video learning in and out of chemistry classrooms.Accepted manuscrip

    Step back, translate, extend: addressing misconceptions relating to energy and free energy in cellular reactions via active-learning videos

    Full text link
    In order to succeed in biochemistry, students must transfer and build upon their understanding of general chemistry and introductory biology concepts. One such critical area of knowledge is bioenergetics. Student misconceptions around energy and free energy must be addressed prior to learning more advanced topics, such as energy flow in metabolic reactions. In this article, we present a series of active-learning videos with embedded questions to address these crucial topics. This video module achieves the following goals: (1) review fundamental chemistry concepts, (2) introduce concepts of reaction coupling and ATP hydrolysis, and (3) foreshadow more advanced biochemical topics such as metabolism. These videos are offered free of charge as traditional videos through YouTube and as an active-learning video module through an online platform, Edpuzzle. Access to videos is provided at chemed.bu.edu.Boston University Undergraduate Research Opportunities Program (UROP); Boston University Digital Education Incubator (DEI) and Digital Learning and Innovation (DL&I)Accepted manuscrip

    BRCA Biological Functions

    Get PDF
    BRCA1 and BRCA2 genes encode proteins that have important roles in DNA repair and act as tumor suppressors. Though the sequence and structure of the proteins produced by BRCA1 and BRCA2 are different, they have similar biological activities. Both BRCA gene products are reported to interact with the RAD51 protein, which is essential for DNA repair through homologous recombination. BRCA gene mutations are associated with an increased risk of solid tumors. Their ubiquitously expressed protein products are involved in essential cellular functions. The defect caused by BRCA gene mutations might be leveraged to develop new targeted cancer treatments. This chapter outlines that BRCA1 and BRCA2 have unique roles in the pathways leading to DNA double-strand break repair and clinical findings show that BRCA genes play a crucial role in a variety of biological processes

    Specific Myosins Control Actin Organization, Cell Morphology, and Migration in Prostate Cancer Cells

    Get PDF
    We investigated the myosin expression profile in prostate cancer cell lines and found that Myo1b, Myo9b, Myo10, and Myo18a were expressed at higher levels in cells with high metastatic potential. Moreover, Myo1b and Myo10 were expressed at higher levels in metastatic tumors. Using an siRNA-based approach, we found that knockdown of each myosin resulted in distinct phenotypes. Myo10 knockdown ablated filopodia and decreased 2D migration speed. Myo18a knockdown increased circumferential non-muscle myosin 2A-associated actin filament arrays in the lamella and reduced directional persistence of 2D migration. Myo9b knockdown increased stress fiber formation, decreased 2D migration speed, and increased directional persistence. Conversely, Myo1b knockdown increased numbers of stress fibers but did not affect 2D migration. In all cases, the cell spread area was increased and 3D migration potential was decreased. Therefore, myosins not only act as molecular motors but also directly influence actin organization and cell morphology, which can contribute to the metastatic phenotype

    c-MET Protects Breast Cancer Cells from Apoptosis Induced by Sodium Butyrate

    Get PDF
    Sodium Butyrate (NaBu) is regarded as a potential reagent for cancer therapy. In this study, a specific breast cancer cell population that is resistant NaBu treatment was identified. These cells possess cancer stem cell characters, such as the capability of sphere formation in vitro and high tumor incident rate (85%) in mouse model. Forty percent of the NaBu resistant cells express the cancer stem cells marker, the CD133, whereas only 10% intact cells present the CD133 antigen. Furthermore, the endogenous expressing c-MET contributes to the survival of cancer stem cell population from the treatment of NaBu. The CD133+ group also presents a higher level of c-MET. A combination treatment of MET siRNA and NaBu efficiently prohibited the breast cancer progression, and the incident rate of the tumor decrease to 18%. This study may help to develop a new and alternative strategy for breast cancer therapy

    Kinome-Wide Functional Genomics Screen Reveals a Novel Mechanism of TNFα-Induced Nuclear Accumulation of the HIF-1α Transcription Factor in Cancer Cells

    Get PDF
    Hypoxia-inducible factor-1 (HIF-1) and its most important subunit, HIF-1α, plays a central role in tumor progression by regulating genes involved in cancer cell survival, proliferation and metastasis. HIF-1α activity is associated with nuclear accumulation of the transcription factor and regulated by several mechanisms including modulation of protein stability and degradation. Among recent advances are the discoveries that inflammation-induced cytokines and growth factors affect protein accumulation of HIF-1α under normoxia conditions. TNFα, a major pro-inflammatory cytokine that promotes tumorigenesis is known as a stimulator of HIF-1α activity. To improve our understanding of TNFα-mediated regulation of HIF-1α nuclear accumulation we screened a kinase-specific siRNA library using a cell imaging–based HIF-1α-eGFP chimera reporter assay. Interestingly, this systematic analysis determined that depletion of kinases involved in conventional TNFα signaling (IKK/NFκB and JNK pathways) has no detrimental effect on HIF-1α accumulation. On the other hand, depletion of PRKAR2B, ADCK2, TRPM7, and TRIB2 significantly decreases the effect of TNFα on HIF-1α stability in osteosarcoma and prostate cancer cell lines. These newly discovered regulators conveyed their activity through a non-conventional RELB-depended NFκB signaling pathway and regulation of superoxide activity. Taken together our data allow us to conclude that TNFα uses a distinct and complex signaling mechanism to induce accumulation of HIF-1α in cancer cells. In summary, our results illuminate a novel mechanism through which cancer initiation and progression may be promoted by inflammatory cytokines, highlighting new potential avenues for fighting this disease

    Urokinase type plasminogen activator mediates Interleukin-17-induced peripheral blood mesenchymal stem cell motility and transendothelial migration

    Get PDF
    Mesenchymal stem cells (MSCs) have the potential to migrate toward damaged tissues increasing tissue regeneration. Interleukin-17 (IL-17) is a proinflammatory cytokine with pleiotropic effects associated with many inflammatory diseases. Although IL-17 can modulate MSC functions, its capacity to regulate MSC migration is not well elucidated so far. Here, we studied the role of IL-17 on peripheral blood (PB) derived MSC migration and transmigration across endothelial cells. IL-17 increased PB-MSC migration in a wound healing assay as well as cell mobilization from collagen gel. Concomitantly IL-17 induced the expression of urokinase type plasminogen activator (uPA) without affecting matrix metalloproteinase expression. The incremented uPA expression mediated the capacity of IL-17 to enhance PB-MSC migration in a ERK1,2 MAPK dependent way. Also, IL-17 induced PB-MSC migration alongside with changes in cell polarization and uPA localization in cell protrusions. Moreover, IL-17 increased PB-MSC adhesion to endothelial cells and transendothelial migration, as well as increased the capacity of PB-MSC adhesion to fibronectin, in an uPA-dependent fashion. Therefore, our data suggested that IL-17 may act as chemotropic factor for PB-MSCs by incrementing cell motility and uPA expression during inflammation development

    Multifunctional Properties of Chicken Embryonic Prenatal Mesenchymal Stem Cells- Pluripotency, Plasticity, and Tumor Suppression

    Get PDF
    The chick embryo represents an accessible and economical in vivo model, which has long been used in developmental biology, gene expression analysis, and loss/gain of function experiments. In the present study, we assessed and characterized bone marrow derived mesenchymal stem cells from prenatal day 13 chicken embryos (chBMMSCs) and determined some novel properties. After assessing the mesenchymal stem cell (MSC) properties of these cells by the presence of their signature markers (CD 44, CD 73, CD 90, CD 105, and vimentin), we ascertained a very broad spectrum of multipotentiality as these MSCs not only differentiated into the classic tri-lineages of MSCs but also into ectodermal, endodermal, and mesodermal lineages such as neuron, hepatocyte, islet cell, and cardiac. In addition to wide plasticity, we detected the presence of several pluripotent markers such as Oct4, Sox2, and Nanog. This is the first study characterizing prenatal chBMMSCs and their ability to not only differentiate into mesenchymal lineages but also into all the germ cell layer lineages. Furthermore, our studies indicate that prenatal chBMMSCs derived from the chick provide an excellent model for multi-lineage development studies because of their broad plasticity and faithful reproduction of MSC traits as seen in the human. Here, we also present evidence for the first time that media derived from prenatal chBMMSC cultures have an anti-tumorigenic, anti-migratory, and pro-apoptotic effect on human tumors cells acting through the Wnt-ß-catenin pathway. These data confirm that chBMMSCs are enriched with factors in their secretome that are able to destroy tumor cells. This suggests a commonality of properties of MSCs across species between human and chicken

    Enhanced progression of human prostate cancer PC3 cells induced by the microenvironment of the seminal vesicle

    Get PDF
    The objective of this study was to characterise the mechanism mediating the prostate cancer progression induced by the microenvironment of seminal vesicle (SV). The invasive potential of PC3 cells significantly increased after treatment with extract from SV of NOD/SCID mouse. Among several growth factors and cytokines that were present in the SV extract, transforming growth factor-β1 (TGF-β1) significantly enhanced the invasive potential of PC3 cells; however, the additional treatment with neutralising antibody against TGF-β1 suppressed the enhanced invasive potential induced by the SV extract. Changes in the invasive potential in PC3 cells after treatment with the SV extract and/or TGF-β1 were in proportion to those in the production of urokinase-type plasminogen activator (uPA) by PC3 cells. Tumour growth as well as the incidence of lymph node metastasis in NOD/SCID mice after the injection of PC3 cells into the SV were significantly greater than those after the injection into the prostate. These findings suggest that the microenvironment of SV enhances the progression of prostate cancer through a stimulated invasive potential, and that enhanced uPA production in prostate cancer cells induced by TGF-β1 could therefore be one of the most important mechanisms involved in the progression of prostate cancer after SV invasion
    corecore