1,657 research outputs found

    Possible trace of neutrino nonstandard interactions in the supernova

    Full text link
    Neutrino non-standard interactions (NSI), previously introduced for the sun, are studied in the supernova context. For normal hierarchy the probability for electron neutrinos and antineutrinos at low energy (E0.80.9MeVE\lesssim 0.8-0.9 MeV) is substantially increased with respect to the non-NSI case and joins its value for inverse hierarchy which is constant with energy. Also for inverse hierarchy the NSI and non-NSI probabilities are the same for each neutrino and antineutrino species. These are the possible visible effects of NSI in the supernova. The decay into antineutrinos, which has been previously shown to be implied by dense matter, cannot be seen experimentally, owing to the smallness of the antineutrino production probability.Comment: 5 pages, 3 eps figures. Acknowledgements include

    Non-equilibrium correlations and entanglement in a semiconductor hybrid circuit-QED system

    Get PDF
    We present a theoretical study of a hybrid circuit-QED system composed of two semiconducting charge-qubits confined in a microwave resonator. The qubits are defined in terms of the charge states of two spatially separated double quantum dots (DQDs) which are coupled to the same photon mode in the microwave resonator. We analyze a transport setup where each DQD is attached to electronic reservoirs and biased out-of-equilibrium by a large voltage, and study how electron transport across each DQD is modified by the coupling to the common resonator. In particular, we show that the inelastic current through each DQD reflects an indirect qubit-qubit interaction mediated by off-resonant photons in the microwave resonator. As a result of this interaction, both charge qubits stay entangled in the steady (dissipative) state. Finite shot noise cross-correlations between currents across distant DQDs are another manifestation of this nontrivial steady-state entanglement.Comment: Final versio

    Remaining inconsistencies with solar neutrinos: can spin flavour precession provide a clue?

    Full text link
    A few inconsistencies remain after it has been ascertained that LMA is the dominant solution to the solar neutrino problem: why is the SuperKamiokande spectrum flat and why is the Chlorine rate prediction over two standard deviations above the data. There also remains the ananswered and important question of whether the active neutrino flux is constant or time varying. We propose a scenario involving spin flavour precession to sterile neutrinos with three active flavours that predicts a flat SuperK spectrum and a Chlorine rate prediction more consistent with data. We also argue that running the Borexino experiment during the next few years may provide a very important clue as to the possible variability of the solar neutrino flux.Comment: 3 pages, 2 figures, contribution to TAUP 2009 (Rome

    The outburst of the eruptive young star OO Serpentis between 1995 and 2006

    Full text link
    OO Serpentis is a deeply embedded pre-main sequence star that went into outburst in 1995 and gradually faded afterwards. Its eruption resembled the well-known FU Orionis-type or EX Lupi-type outbursts. Since very few such events have ever been documented at infrared wavelengths, our aim is to study the temporal evolution of OO Ser in the infrared. OO Ser was monitored with the Infrared Space Observatory starting 4 months after peak brightness and covering 20 months. In 2004-2006 we again observed OO Ser from the ground and complemented this dataset with archival Spitzer obsevations also from 2004. We analysed these data with special attention to source confusion and constructed light curves at 10 different wavelengths as well as spectral energy distributions. The outburst caused brightening in the whole infrared regime. According to the infrared light curves, OO Ser started a wavelength-independent fading after peak brightness. Later the flux decay became slower but stayed wavelength-independent. The fading is still ongoing, and current fading rates indicate that OO Ser will not return to quiescent state before 2011. The outburst timescale of OO Ser seems to be shorter than that of FUors, but longer than that of EXors. The outburst timescale and the moderate luminosity suggest that OO Ser is different from both FUors and EXors, and shows similarities to the recently erupted young star V1647 Ori. Based on its spectral energy distribution and bolometric temperature, OO Ser seems to be an early class I object, with an age of < 10^5 yr. The object is probably surrounded by an accretion disc and a dense envelope. Due to the shorter outburst timescales, the viscosity in the circumstellar disc of OO Ser is probably an order of magnitude higher than usual for FUors.Comment: 12 pages, 7 figures, accepted for publication in A&

    Multi-wavelength study of the low-luminosity outbursting young star HBC 722

    Get PDF
    HBC 722 (V2493 Cyg) is a young eruptive star in outburst since 2010. It is an FU Orionis-type object with an atypically low outburst luminosity. Because it was well characterized in the pre-outburst phase, HBC 722 is one of the few FUors where we can learn about the physical changes and processes associated with the eruption. We monitored the source in the BVRIJHKs bands from the ground, and at 3.6 and 4.5 μ\mum from space with the Spitzer Space Telescope. We analyzed the light curves and the spectral energy distribution by fitting a series of steady accretion disk models at many epochs. We also analyzed the spectral properties of the source based on new optical and infrared spectra. We also mapped HBC 722 and its surroundings at millimeter wavelengths. From the light curve analysis we concluded that the first peak of the outburst in 2010 September was due to an abrupt increase of the accretion rate in the innermost part of the system. This was followed by a long term process, when the brightening was mainly due to a gradual increase of the accretion rate and the emitting area. Our new observations show that the source is currently in a constant plateau phase. We found that around the peak the continuum was bluer and the Hα\alpha profile changed significantly between 2012 and 2013. The source was not detected in the millimeter continuum, but we discovered a flattened molecular gas structure with a diameter of 1700 au and mass of 0.3 M_{\odot} centered on HBC 722. While the first brightness peak could be interpreted as a rapid fall of piled-up material from the inner disk onto the star, the later monotonic flux rise suggests the outward expansion of a hot component according to the theory of Bell & Lin (1994). Our study of HBC 722 demonstrated that accretion-related outbursts can occur in young stellar objects even with very low mass disks, in the late Class II phase.Comment: 11 pages, 7 figures, 3 online tables. Accepted for publication in the A&

    Detecting solar g-modes with ASTROD

    Full text link
    We present an up-to-date estimate for the prospect of using the Astrodynamical Space Test of Relativity using Optical Devices (ASTROD) for an unambiguous detection of solar g modes (f < 400 micro Hertz) through their gravitational signature. There are currently two major efforts to detect low-frequency gravitational effects, ASTROD and the Laser Interferometer Space Antenna (LISA). Using the most recent g mode surface amplitude estimates, both observational and theoretical, it is unclear whether LISA will be capable of successfully detecting these modes. The ASTROD project may be better suited for detection as its sensitivity curve is shifted towards lower frequencies with the best sensitivity occurring in the range 100-300 micro Hertz.Comment: HELAS II international conference "Helioseismology, asteroseismology and MHD connections", 20-24 August 2007, Goettingen, German

    Critical range of soil organic carbon in southern Europe lands under desertification risk

    Get PDF
    Soil quality is fundamental for ecosystem long term functionality, productivity and resilience to current climatic changes. Despite its importance, soil is lost and degraded at dramatic rates worldwide. In Europe, the Mediterranean areas are a hotspot for soil erosion and land degradation due to a combination of climatic conditions, soils, geomorphology and anthropic pressure. Soil organic carbon (SOC) is considered a key indicator of soil quality as it relates to other fundamental soil functions supporting crucial ecosystem services. In the present study, the functional relationships among SOC and other important soil properties were investigated in the topsoil of 38 sites under different land cover and management, distributed over three Mediterranean regions under strong desertification risk, with the final aim to define critical SOC ranges for fast loss of important soil functionalities. The study sites belonged to private and public landowners seeking to adopt sustainable land management practices to support ecosystem sustainability and productivity of their land. Data showed a very clear relationship between SOC concentrations and the other analyzed soil properties: total nitrogen, bulk density, cation exchange capacity, available water capacity, microbial biomass, C fractions associated to particulate organic matter and to the mineral soil component and indirectly with net N mineralization. Below 20 g SOC kg−1, additional changes of SOC concentrations resulted in a steep variation of all the analyzed soil indicators, an order of magnitude higher than the changes occurring between 50 and 100 g SOC kg−1 and 3–4 times the changes observed at 20–50 g SOC kg−1. About half of the study sites showed average SOC concentration of the topsoil centimetres &lt;20 g SOC kg−1. For these areas the level of SOC might hence be considered critical and immediate and effective recovery management plans are needed to avoid complete land degradation in the next future
    corecore