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Abstract. We present a theoretical study of a hybrid circuit-quantum
electrodynamics system composed of two semiconducting charge-qubits
confined in a microwave resonator. The qubits are defined in terms of the
charge states of two spatially separated double quantum dots (DQDs) which
are coupled to the same photon mode in the microwave resonator. We analyse
a transport setup where each DQD is attached to electronic reservoirs and biased
out-of-equilibrium by a large voltage, and study how electron transport across
each DQD is modified by the coupling to the common resonator. In particular,
we show that the inelastic current through each DQD reflects an indirect
qubit–qubit interaction mediated by off-resonant photons in the microwave
resonator. As a result of this interaction, both charge qubits stay entangled in the
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steady (dissipative) state. Finite shot noise cross-correlations between currents
across distant DQDs are another manifestation of this nontrivial steady-state
entanglement.
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1. Introduction

Recent technological progress has made it possible to coherently couple superconducting
qubits to microwave photons on a superconducting chip [1]. This so-called circuit quantum
electrodynamics (circuit-QED) [2] has paved the way for new research directions beyond
standard cavity QED systems [3–5]. Apart from the high degree of tunability in circuit-QED,
most of the novelty comes from the fact that the coupling between qubits and microwave
photons can reach values well above the ones between natural atoms and photons in optical
cavities [6].

An interesting alternative to the above ideas is to use hybrid circuit-QED [7] with qubits
defined in semiconducting quantum dots (QDs) [8–12]. Such a concept has been recently
experimentally implemented [13–19]. In these hybrid structures, the semiconducting QDs are
typically coupled to normal electronic reservoirs such that electronic transport may be used to
characterize/modify the properties of the circuit-QED system. Although this possibility had
remained largely unexplored, except for some works analysing the transport-induced lasing
states in the resonator [20–24], these kind of setups are now attracting growing theoretical
attention [25, 26].

In this context, we here analyse how the coupling to a common photon mode generates
entanglement between distant charge qubits realized in double QDs (DQDs) and how this
entanglement manifests in the transport properties of the system. In particular, we present
a detailed analysis of how the electron currents across each DQD are modified due to the
interaction with the photons in the circuit. The coupling of each DQD to a common microwave
resonator generates an indirect coupling between DQDs, which gives rise to positive shot
noise cross-correlations between distant currents across them. We analyse this physics in terms
of an effective model and show that off-resonant photons are responsible for the induced
indirect coupling. Moreover, we demonstrate that both charge qubits are entangled in the steady
(dissipative) state due to this resonator-induced coupling. In [25], Bergenfeldt and Samuelsson
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have studied the effect that non-local interaction between two DQDs resonantly coupled to the
oscillator has on finite bias voltage transport properties (which are prone to finite temperature
effects in the electronic reservoirs). In contrast, we here focus on a different operating regime
where the non-local interaction is induced off-resonance and transport occurs at very large
voltages. In this large-voltage regime, the results are essentially independent on the electronic
reservoir temperature and are valid at arbitrary couplings to the reservoirs. This large-voltage
regime is also analysed in [26], where some overlapping results about photon-mediated transport
and finite shot noise cross-correlations have been reported.

The paper is organized as follows. In section 2 we describe the model for two DQDs
coupled to a microwave resonator as well as the master equation that governs the dynamics
of this open quantum system. In section 3 we discuss the stationary transport properties (mean
value of the current and shot noise) of the system. This section is divided in two parts. The
first part (section 3.1) reviews the case of a single DQD. We then turn to the analysis of the
two DQD system (section 3.2) by also calculating shot noise cross-correlations between distant
currents across each DQD. In section 4 we focus on the generation of qubit–qubit entanglement
induced by the common coupling to a microwave photon mode, and compare it with the results
obtained for the cross-correlations in the previous section. In particular, we analyse the steady-
state Bell states occupations and demonstrate that indeed cross-correlations between distant
currents constitute an indicator of non-local qubit–qubit entanglement. In section 5 we extend
our study to the case of asymmetric couplings between each DQD and the microwave resonator.
Our conclusions are presented in section 6.

2. Model

We consider the coupling of the charge states of two uncoupled semiconductor DQDs to
an electromagnetic resonator with a high Q-factor, as for instance the superconducting
transmission line described in the recent experiments of [16]. We assume that the DQDs are
placed at the ends of the resonator, as schematically depicted in figure 1. In the following,
we consider that the charging energy on each DQD is the largest energy scale of the problem
such that, for each individual DQD, an excess electron defines the two states of a charge qubit,
|L i〉 and |Ri〉 (i = 1, 2), see e.g. [27]. On this basis, the Hamiltonian describing the DQDs
reads

Hel =

∑
i

(
1

2
εiσ

i
z + tiσ

i
x

)
, (1)

where the energy detuning in each DQD is given by εi , ti is the tunnelling coupling between
dots of the i th DQD and σ j is the j th Pauli matrix acting on the charge basis of each qubit,
namely σ i

z ≡ |L i〉〈L i | − |Ri〉〈Ri | and σ i
x ≡ |L i〉〈Ri | + |Ri〉〈L i |.

The transmission line resonator is modelled as a quantum harmonic oscillator Hres =

h̄ωra†a, where a† (a) is the creation (annihilation) operator of photons in the resonator with
frequency ωr. The charge states of each qubit are coupled to the same mode of the resonator,
such that the coupling term reads

He−res =

∑
i

h̄giσ
i
z (a

† + a). (2)
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Figure 1. Schematics of the two charge qubits coupled to a transmission line
resonator. An excess charge in each double dot (formed by the L i and the Ri dots)
defines the states of the qubit. Both qubits are attached to electronic reservoirs,
via the rates 0L ,i and 0R,i , such that an electrical current pass through them. The
qubits are located at the ends of the resonator in order to enhance the coupling
with the electromagnetic field.

Experimentally, typical photon frequency takes values ωr/2π ∼1–10 GHz, whereas couplings
strengths g/2π ∼10–30 MHz have been reported for a single DQD coupled to a microwave
resonator [16, 17].

Finally, we consider that each DQD (i = 1, 2) is attached to electronic reservoirs, which
are described by the Hamiltonian

Hleads =

∑
i

∑
k

{εL
k,i c

†
kL ,i ckL ,i + εR

k,i c
†
kR ,i ckR ,i}, (3)

in which c†
kβ ,i(ckβ ,i) is the creation (annihilation) operator of electrons in the left/right contact,

β ∈ L , R, with energy ε
β

k,i . The coupling of each DQD to the leads reads

Hint =

∑
i

∑
k

{V L
k,i c

†
k,L ,i dL ,i + h.c. + L → R}, (4)

where dL/R,i (d†
L/R,i) creates (annihilates) an electron in the left/right QD of each DQD, and V β

k,i
are the tunnelling matrix elements. Due to this coupling to the reservoirs, situations in which
either of the two DQDs (or both) are empty need to be considered and hence the Hilbert space
in the charge sector is spanned by the states |α1, α2〉, with α = L , R, 0. This transport model can
be easily extended to a system consisting of several qubits, see e.g. [28], and is the single-mode
version of previous studies focusing on bath-mediated interactions [29].

The total Hamiltonian of the system is given by Htot = Hel + Hres + He−res + Hleads + Hint.
The dynamics of the resonator and the DQDs is described by the master equation for the reduced
density matrix ρ(t) obtained after tracing out the reservoirs degrees of freedom and applying
a Born–Markov approximation with respect to the Hamiltonian Hint [30]. In the Schrödinger
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picture the master equation reads ρ̇(t) = Lρ with the Liouvillian:

Lρ = −i
[
Hel + Hres + He−res, ρ(t)

]
−

∑
i

0L
i

2

(
dL ,i d

†
L ,iρ(t) − 2d†

L ,iρ(t)dL ,i + ρ(t)dL ,i d
†
L ,i

)
−

∑
i

0R
i

2

(
d†

R,i dR,iρ(t) − 2dR,iρ(t)d†
R,i + ρ(t)d†

R,i dR,i

)
−

κ

2

(
2aρ(t)a†

− a†aρ(t) + ρ(t)a†a
)

(5)

with the tunnelling rates to reservoirs 0
β

i = 2π
∑

k,i |V β

k,i |
2δ(εi,β − εk,i,β) and where we

considered the limit of infinite source–drain voltage, µL → ∞ and µR → −∞ (such that the
Fermi functions in the reservoirs become fL = 1 and fR = 0). In this limit, the Born–Markov
approximation with respect to the coupling to reservoirs is essentially exact and, more
importantly, the physics no longer depends on the temperature of the electronic reservoirs
[31, 32]. A finite zero-temperature damping in the cavity, with rate κ [33], has also been taken
into account by including the last Lindblad term in equation (5).

We are interested in the generation of qubit–qubit entanglement and in the transport
properties in the stationary state, ρstat. This can be obtained from equation (5) as ρ̇(t) =

Lρstat
= 0 such that the Liouvillian L has a zero eigenvalue with right eigenvector denoted

as |0〉〉 = ρstat. The corresponding left eigenvector is 〈〈0̃| such that the probability conservation
reads 〈〈0̃|0〉〉 = Tr[1̂ρstat] = 1. Using this language, the average of any operator Â acting on the
qubit–resonator system reads 〈 Â〉 = Tr[ Âρstat] = 〈〈0̃| Â|0〉〉 = 〈〈 Â〉〉.

The set of equations for the elements of the density matrix ρnm(t), in the basis given by
the direct product of the electronic states and the oscillator Fock states |α1, α2〉 ⊗ |n〉 (with
n = 0, 1, 2, . . .), is solved numerically by truncating up to a maximum number of photon states
n = Nmax

6. We take the order of magnitude of the parameters from the recent experiments
reporting circuit-QED devices with semiconducting QDs [16, 17]. Even though we focus here
on this moderate coupling regime g/ωr ∼ 10−2, we note in passing that our numerical scheme
allows in principle to include stronger couplings, such as the ones already achieved in circuit-
QED architectures with superconducting qubits [6, 34].

3. Stationary transport properties: current, shot noise and current correlations

We expect that the indirect, non-local two-qubit interaction induced by the coupling to a
common resonator mode can be revealed in transport through either DQD. As previously
mentioned, we restrict ourselves to the Coulomb blockade regime in the infinite bias voltage
limit.

In this case of unidirectional transport, the total current across the DQDi is described by
the operator Iiρ = e0R,i dR,iρd†

R,i , and the corresponding steady-state expectation value reads
Ii = 〈〈0̃|Ii |0〉〉 = T r [Iiρ

stat].
We also analyse the non-equilibrium quantum noise, resulting from the temporal

fluctuations of the current, by means of the current–current correlation function
〈1Ii(τ ), 1I j(0)〉, with 1Ii(t) = Ii(t) − 〈Ii〉. The Fourier transform of such correlation function

6 With the order of magnitude of the parameters used here, Nmax = 6 is sufficient to achieve numerical
convergence.
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defines the power spectral density of shot noise:

Si j(ω) = 2
∫

∞

−∞

dτ eiωτ
〈{1Ii(τ ), 1I j(0)}〉. (6)

It has been shown that this finite-frequency power spectral density contains a great deal of
information about internal dynamics of the system [35]. Nevertheless, we here restrict the
analysis to zero frequencies for simplicity. Due to the possibility of individual control and
manipulation of the QDs, in particular we focus on the cross-correlations which, as we shall
show, exhibit features related with the qubit–qubit effective interaction induced by the common
coupling to the resonator. Additional interest in studying shot noise and cross-correlations reside
in theoretical proposals which make use of current correlations to study and detect entanglement
in mesoscopic systems [36–43].

In practice, the shot noise at zero-frequency is calculated in terms of the inverse of
the part of the Liouvillian that is non-singular at zero-frequency (or pseudo-inverse), R =

QL−1Q (with Q= 1 − |0〉〉〈〈0̃|), see e.g. [44–46]. The diagonal part of the noise reads Si i(0) =

2(〈〈Ii〉〉 − 2〈〈Ii RIi〉〉), with i = 1, 2, whereas the off-diagonal noise cross-correlations read
S12(0) = S21(0) = −2 (〈〈I1 RI2〉〉 + 〈〈I2 RI1〉〉). Note that any finite off-diagonal noise in this
setup indicates correlations between distant currents across each DQD.

In what follows we present our noise results in the form of Fano factors, defined as
Fi j = Si j(0)/(2e

√
Ii I j), which quantifies deviations from the Poissonian noise originated by

uncorrelated carriers. In particular, super-Poissonian noise (F > 1) is related to a bunching
behaviour of the carriers whereas sub-Poissonian noise (F < 1) signals anti-bunching. For the
relation between (anti)bunching and the Fano factor in electronic transport, see [47].

3.1. A single double quantum dot (DQD) coupled to the resonator

To set the stage for our study, we begin by analysing the case of a single DQD coupled to a
microwave resonator. The physics here is that of inelastic transport through a two-level system,
a problem which has received a lot of attention in various contexts [32, 48–56]. In the frame of
circuit-QED with semiconducting qubits, the problem has been theoretically studied in [21, 23]
mainly with focus on lasing.

In figure 2(a) we show the current in the DQD as a function of its level detuning ε1 (all
the parameters are expressed in units of the resonator frequency ωr). As expected, there is an
elastic peak in the current around ε1 = 0 which corresponds to resonant tunnelling across the
DQD. Here, the electronic transport occurs by the tunnel coupling with the reservoirs, which we
assumed to be the same for both leads 0L ,1 = 0R,1. The height and width of the elastic peak is
in agreement with the well known analytical expression for the current through a DQD [31, 57].
For finite detuning (i.e. with the electronic levels of the DQD far from resonance) the current is
suppressed except at values of ε1 corresponding to a resonance condition at which the frequency
of the qubit �1 ≡

√
ε2

1 + 4t2
1 equals the frequency of the resonator ωr. This feature corresponds

to inelastic processes in which the tunnelling of an electron between the left and right dots of
the qubit excites the state of the resonator. This behaviour is in qualitative agreement with the
theoretical results of Jin et al [21], who studied lasing in a DQD-based circuit-QED system
(the main idea being that transport of electrons through the artificial two-level system can lead
to a population inversion and induce a lasing state in the microwave resonator, as studied for
superconducting qubit-based architectures, see e.g., [7]. Indeed lasing in a Cooper pair box
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Figure 2. Results for (a) stationary current and (b) Fano factor for a single-
qubit coupled to a transmission line resonator. The solid line corresponds to
equal tunnelling rates to the reservoirs (0L ,1 = 0R,1 = 10−3) and the dashed line
to asymmetric rates (0L ,1 = 0.01, 0R,1 = 10−3). Note that the inelastic peaks
appear at values of ε1 corresponding to the resonance condition �1 = nh̄ωr.
Inset: zoom of the current peak at �1 = 2h̄ωr for symmetric rates. The rest of
the parameters (in units of ωr) are: t1 = 0.2, g1 = 0.008 and κ = 5 × 10−4.

coupled to a superconducting resonator was experimentally demonstrated in [58]). Although we
are not interested in analysing the specific lasing conditions, the underlying mechanism giving
rise to the inelastic peak of the current is the same. For large enough electron–boson coupling
g1, additional resonances at �1 ≈ nh̄ωr appear. An example for n = 2 is shown in the inset in
figure 2(a).

The physics above is very similar to the one of spontaneous emission of a DQD coupled to
a dissipative bath of phonons7. In fact, a spontaneous emission background will always coexist
with the photon emission peaks we just discussed. The reason is simple: the DQD is never truly
isolated from the environment and even near zero temperature there is a finite current for ε1 > 0
due to quantum fluctuations. This spontaneous emission contribution to the inelastic current due
to vacuum fluctuations was first demonstrated experimentally in [59].

More specifically, one can estimate the role that dissipative effects have on our scheme by
including in the model a dipolar coupling to a bosonic bath (very much like the coupling in
equation (2), but replacing the single mode cavity by a full bath of bosons, namely He−bath =∑

q
gq

2 (b†
q + bq)σz). Within the Born–Markov approximation this leads to an energy relaxation

rate of the form (for details, see e.g. [32]) γ1 ≡ 2π
t2
1

�2
1
J (�1

h̄ ) coth( �1
2kBT ), where the effects of the

dissipative bosonic bath are fully encapsulated in the spectral density J (ω) ≡
∑

q |gq|
2δ(ω −

ωq). In GaAs–AlGaAs DQDs the energy relaxation is primarily dominated by the emission of
piezoelectric acoustic phonons which in the simplest approximation (bulk limit and vanishing
longitudinal speed of sound) can be described by an Ohmic bath J (ω) = 2αω e−ω/ωc , where ωc

is a high frequency cutoff 8. The total DQD decoherence rate is given by γ = γ1/2 + 0R/2 + γφ,
where γφ is the pure dephasing rate which for an Ohmic bath reads γφ = 2πα( ε1

�1
)2kBT .

7 As well as the physics of on-chip noise detection using two-level systems [49, 56, 60].
8 If one considers a more realistic bath of piezoacoustic phonons, the spectral function reads J (ω) =

2αω [1 − ωd/ω sin (ω/ωd)] e−ω/ωc , with ωd depending on geometry (for details, see [32]).
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The advantage of such simple parameterization of the bath is that it allows to estimate the
coupling parameter α by just substituting DQD parameters from a given experiment. For
example, in the experimental work by Frey et al [16], typical relaxation rates for charge
qubits in the large detuning regime ε1 > t1 are γ1

2π
≈ 100 MHz, while dephasing rates range

from γφ

2π
≈ 1–3 GHz. This qubit dephasing rate is significantly larger than the coupling strength

g
2π

≈ 50 MHz, so a vacuum Rabi mode splitting, implying a fully quantum coherent interaction
between the DQD and the cavity, is not observed (subsequent experiments [18] claimed much
smaller dephasing rates and hence a strong cavity–qubit coupling regime, however the analysis
of these experiments has been recently questioned in [61]). Instead, the observed frequency
shift and linewidth broadening of the resonator in the experiments are consistent with a dipole
coupling of several tens of MHz to the resonator. Since the effects we are discussing here do not
involve the stringent condition of working with full hybrid cavity–qubit states, namely a strong
coupling limit, we expect that qubit decoherence is not a major obstacle for the physics we shall
be discussing in the following9.

The corresponding Fano factor F11, shown in figure 2(b), exhibits a dip around ε1 = 0.
There, interdot tunnelling delocalizes the charge which, combined with the strong Coulomb
blockade, reduces the noise and gives sub-Poissonian Fano factor, F11 < 1 [50, 62]. As the level
detuning ε1 increases, the charge becomes localized, say in the left dot for ε1 > 0, and hence
Poissonian noise from a single barrier (the one parameterized by 0L) is obtained. This is so
until the resonance conditions �1 = nh̄ωr are reached, where the noise is reduced again yielding
F11 < 1. This sub-Poissonian value at resonance with the photon mode reveals that the charge
is transferred across the DQD with the simultaneous excitation of the resonator. The same kind
of result is obtained for emission into a full bath of bosons [50].

Note also the small resonant feature in the region ε1 < 0. Even though in this configuration
the extra charge is mainly localized in the left dot, there is a small probability of populating the
right dot (and subsequently tunnel out from the right barrier). From the point of view of the
qubit, this means that there is a small probability of populating the excited state and hence
to emit photons. This can be easily seen if we write the qubit–photon interaction in the qubit
eigenbasis |e〉 = cos θ

2 |L〉 + sin θ

2 |R〉 and |g〉 = − sin θ

2 |L〉 + cos θ

2 |R〉, with θ = arctan( 2t1
ε1

) being
the angle that characterizes mixing in the charge subspace: He−res = g1(cos θτz + sin θτx)(a† +
a), with τz = |e〉〈e| − |g〉〈g| and τx = |e〉〈g| + |g〉〈e|. We have checked that photon emission at
ε1 ≈ −1 is small but finite (the photon occupation has a resonance around this detuning and
increases from zero to 〈n〉 ≈ 10−3, not shown), as a result of |e〉 → |g〉 relaxation processes.
Dynamically, these rare events, where the qubit is excited for negative detuning such that photon
emission is possible, contribute to the noise which shows a feature at �1 = h̄ωr with ε1 < 0. On
the contrary, they do not significantly change the average current, demonstrating the superior
sensitivity that noise has.

The effect on the transport properties of asymmetric tunnelling rates is also shown in
figure 2, where we considered that 0L ,1 > 0R,1. The current, figure 2(a), exhibits the same
qualitative behaviour than the case with equal rates, with an elastic peak around ε = 0 and
satellite peaks at the resonances qubit–resonator. On the contrary, the Fano factor changes
completely for asymmetric rates, figure 2(b). In this case, F11 presents a double peak structure in

9 A systematic study of decoherence effects on transport and noise in a circuit QED system based on DQDs
can be found in [21]. The main effect of decoherence is that transport resonances involving photons just become
broadened, which supports our arguments.
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Figure 3. (a) Steady-state current and (b) Fano factor in the first DQD as a
function of its level position ε1 for two different configurations of the second
qubit: ε2 = −1 and ε2 = 1. The two examples have been vertically shifted (with
an offset of 0.4 and 0.6 respectively) for the sake of clarity. Parameters (in units
of ωr): g1 = g2 = g = 0.008, t1 = t2 = t = 0.2, 0 = 10−3 and κ = 10−3.

the region ε = 0, with the maximum of the peaks corresponding to super-Poissonian noise. This
well-known effect can be understood from the analytical expression of the Fano factor [63] and,
in particular, is originated from the smaller coupling to the drain reservoir which, ultimately,
makes the Coulomb interaction more effective and gives rise to bunching in transport with
F11 > 1. The same kind of bunching behaviour is observed for the Fano factor at the
qubit–photon resonances. It is interesting to compare this F11 > 1 at the one photon resonance
with the result for a full bosonic bath which always results in sub-Poissonian noise [50, 64].
Hence super-Poissonian noise results from the qubit–photon coherent interaction. This result is
also along the lines of [64], where the authors demonstrate that the bunching effect cannot be
obtained from a picture without qubit coherences. In the context of lasing, this sort of super-
Poissonian noise has been related to squeezing of the resonator state [65].

3.2. Two DQDs coupled to the transmission line resonator

We turn now to our original model in which two DQDs are coupled to the same photon mode of
the microwave resonator, but uncoupled to each other. For simplicity, we consider first the same
intra-dot tunnel couplings ti = t and equal electron–photon coupling gi = g. It is assumed that
the tunnelling rates to left and right reservoirs are equal and also equivalent for both DQDs i.e.
0L ,i = 0R,i = 0, unless otherwise stated. As in the case for a single DQD, all the parameters
are given in terms of the bare frequency of the microwave resonator ωr.

Results for the mean value of the stationary current across the first DQD, I1, as function of
its level detuning ε1, while keeping the second DQD in a fixed level structure, are presented in
figure 3(a). Similarly to the case for a single DQD, there is an elastic peak in I1 around ε1 = 0.
A second, inelastic peak appears in the region where this qubit enters in resonance with the
photon, �1 ≈ h̄ωr revealing that this effect is entirely due to the coupling of this DQD with the
resonator and thus will appear irrespective of the presence of the second DQD. We refer to this
feature as the one-qubit (1qb) peak.

Interestingly, an additional peak in I1 is observed in the emission part ε1 > 0 for the case
ε2 = −1, and in the absorption part ε1 < 0 with ε2 = 1. The third peak arises when both DQDs
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Figure 4. Comparison of the results for the steady-state current in the first DQD
as a function of its level position ε1, obtained with the full master equation (5) and
with the model described by the effective Hamiltonian (7). Parameters: ε2 = −1,
g = 0.008, t = 0.2, 0 = 10−3 and κ = 10−3.

are brought in resonance with each other, �1 = �2, with opposite detuning, ε1 = −ε2, but
slightly out of resonance with the photon mode, �1 = �2 6= h̄ωr. It is a result of an indirect
qubit–qubit interaction induced by the common coupling to the microwave resonator and
therefore we refer to it as the two-qubits (2qb) peak. The fact that this resonance appears at an
energy larger than the frequency ωr reveals that the effective interaction is obtained via virtual
photons: when both qubits are in resonance, the excitation in one of the DQDs is transferred to
the other by virtually becoming a photon in the microwave resonator. Similar physics has been
demonstrated experimentally in circuit-QED systems with superconducting qubits, see [66].

In order to have a better understanding of the induced qubit–qubit interaction, we derive an
effective Hamiltonian valid in the regime |�i − ωr| > g where the 2qb-features appear. In this
regime, with both qubits on resonance with each other but off-resonance with the mode, such
that the resonator remains essentially in its ground-state with the interaction between the qubits
mediated by virtual photons. We can describe this situation with an effective Hamiltonian [67]
that acts in the sub-space spanned by the states |s1, s2, 0〉 where the resonator is empty and
si = L i , Ri describe the qubit states. Performing second-order perturbation theory for the action
of the Hamiltonian H2 = Hel + Hres + He−res within this sector and restricting excitations to single
photon states, |s ′

1, s ′

2, 1〉, we obtain (see the appendix)

Heff =

∑
i

(
1

2
εiσ

i
z + t ′

i,effσ
i
x

)
+ J ′

zσ
1
z σ 2

z −

∑
i 6= j

J ′

xz,i jσ
i
z σ

j
x , (7)

where a constant term has been neglected. The effective Hamiltonian of equation (7) explicitly
shows that the interaction of the qubits with a common photon mode translates into a shift of
their frequencies, through the renormalized tunnelling amplitude

t ′

i,eff = ti

[
1 +

g2
i

�i

(
1

�i − ωr

)]
, (8)
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Figure 5. Current on the first DQD around the qubit–qubit resonance (a) as a
function of ε1 for different values of ε2 (rest of the parameters as those used
in figure 3); (b) as a function of 0R,2 (parameters in units of ωr: ε1 = −ε2 = 1,
t = 0.2, 0L ,1 = 0R,1 = 0L ,2 = 10−3, κ = 10−3).

as well as two types of qubit–qubit interaction. The first one is Ising-like with effective exchange
constant

J ′

z =

∑
i

2g1g2t2
i

�2
i (�i − ωr)

, (9)

whereas the second one is an X Z exchange interaction with a coupling strength

J ′

xz,i j =
gi g jε j t j

�2
j

(
1

� j − ωr

)
. (10)

In these expressions for the effective couplings we have made the further assumptions |�i −

ω| � ω and |�i − ω| � |�i + ω| consistent with the dispersive limit and the rotating-wave
approximation10.

The interaction terms in equation (7) capture quite well the 2qb transport features as shown
in figure 4, where we plot a comparison of the current calculated with an effective master
equation obtained from the model (7) against the one obtained with the full master equation
given by (5), around the two-qubits resonance condition �1 = �2. There, it can be noted that
the effective model reproduces the width and height of the 2qb peak. Outside this qubit–qubit
resonance condition the effective Hamiltonian is no longer valid and, therefore, cannot describe
transport in the full regime of level detunings11.

Once we have shown that the 2qb feature comes indeed from a resonator-induced
interaction between both charge qubits, we describe how the non-local character of this
interaction can be easily explored.

This is explicitly demonstrated in figure 5(a) where we show results for I1 as a function of
ε1 around the two-qubit resonance condition and for different values of ε2. The 2qb-peak in the
current through one qubit clearly moves as one varies the level position in the other, while
the 1qb resonance remains unaltered (not shown) upon changing ε2. We can also note that as the

10 Note that we have effectively removed the photons from the problem, this is the reason why the Hamiltonian is
not in the standard dispersive form.
11 The results presented in the following are obtained with the full master equation (5), while the effective
Hamiltonian (7) will be used to understand the transport features appearing at the qubit–qubit resonance �1 = �2.
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Figure 6. (a) Correlators for the current across both qubits, F21, and (b)
concurrence, for ε2 = −1 (solid line) and ε2 = 1 (dashed line). Same parameters
as in figure 3.

difference |�i − ωr| increases, the effective couplings given by equations (9) and (10) decrease
and therefore the induced qubit–qubit interaction is turned off. Experiments along these lines,
with individual addressing of the QDs, have been recently reported for transport through carbon-
nanotube QDs, where non-local control mediated by a photon cavity (in the classical limit) has
been demonstrated [19]. Thus we expect that an experimental test of our prediction in figure 5(a)
is within reach.

An even more interesting possibility is to non-locally manipulate the qubit–qubit induced
interaction by tuning the dissipative coupling of one of the qubits with its fermionic reservoirs. A
strong coupling to the right reservoir in, say, qubit 2 induces a transport version of the quantum
Zeno effect which tends to freeze the dynamics of the second qubit by effectively localizing the
charge in the left dot of the DQD2, with 〈σ 2

z 〉 → 1. We demonstrate this effect in figure 5(b)
where the current through the first DQD as a function of 0R,2 is shown for the two-qubit
resonance condition ε1 = −ε2, with 0β,1 = 0L ,2 = 0. It is observed there that for fixed qubits
parameters, the current through DQD1 is strongly reduced by increasing merely the rate 0R,2

of the second DQD. We can reinforce the interpretation of this results by recalling the effective
qubit–qubit interaction: for very large 0R,2 one can replace the operators of the second qubit
by the corresponding mean value; then the effective coupling constants for the first qubit are
also frozen and results in a smaller effective coupling. A strong coupling to a dissipative bath
could also lead to charge localization and hence to effectively destroy the qubit–qubit interaction
mediated by photons.

To check more critically the presence of non-local correlations mediated by the microwave
resonator, we study how non-trivial noise correlations develop. The Fano factor for the DQD1
shows the same qualitative behaviour exhibited in the single-qubit case (for symmetric rates
with the reservoirs), with sub-Poissonian regions around all resonances of the problem, see
figure 3(b).

More crucially, the cross-correlations between separate currents through both DQDs, F12,
develop sharp resonances at the qubit–qubit resonance �1 = �2, figure 6(a). Apart from these
clear resonances, other small features signal finite microwave resonator occupations which lead
to non-zero correlations. As the coupling with the resonator increases, such features, and more
generally the overall behaviour as a function of level detuning, can become rather intricate.
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Figure 7. Colormap of (a) cross-correlations F12 and (b) concurrence around
the two-qubit resonance as a function of the level detuning ε1 and the coupling
parameter with the resonator, g. Rest of the parameters (in units of ωr): ε2 = −1,
t = 0.2, 0 = 10−3, κ = 10−3.

Figure 7(a) shows the cross-correlations for increasing g in the region around the 2qb resonance.
This figure reveals that the peak emerged around this resonance splits as the qubit–resonator
coupling becomes larger. At the same time, the resonances become broader such that the
function F12(ε1, g) develops a two-lobe structure. As we shall show in the next section, this
characteristic structure signals the formation of Bell states between both qubits and hence the
development of non-local entanglement.

4. Qubit–qubit entanglement

So far we have demonstrated that transport exhibits signatures of the induced interaction
between the DQDs due to the common coupling to photons in the microwave resonator.
Here, we go a step further an explicitly demonstrate that this common coupling can
generate entanglement. In particular, we show that qubit–qubit entanglement under non-
equilibrium conditions can be generated by virtual photons. For quantifying the non-equilibrium
entanglement we make use of the Concurrence [68], a measure of entanglement defined
by means of the density matrix of the system in the computational basis. We calculate the
Concurrence of the steady-state P̂ρstat, which corresponds to the projection of the stationary
density matrix onto the two-qubits subspace with a proper normalization [45], and trace out the
states of the bosonic mode.

Numerical results for the Concurrence, C , considering the same interdot tunnelling
amplitude in both qubits, ti = t , and symmetric electron–photon coupling gi = g are shown
in figure 6(b) for two different level detunings in the second qubit. For the typical value of the
coupling g = 0.008 used here, C shows sharp features in the 2qb resonance, ε1 = −ε2.

In figure 7(b) we show the detail of concurrence in the region of the 2qb resonance, as a
function of ε1 and the coupling strength to the microwave resonator g, for ε2 = −1. Here we
find that, in the same way as the cross-correlators F12, the peak exhibited by the concurrence
around resonance splits and develops a two-lobe structure as the coupling g becomes larger.
The similarity between these two quantities shows that current cross-correlations in the above
configuration constitute an indicator of non-local qubit–qubit entanglement.
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Figure 8. Stationary occupation probability of the Bell state |φ+
〉 (left) and |φ−

〉

(right) around the two-qubit resonance. Same axes and parameters as in figure 7.

Although, to the best of our knowledge, a formal proof connecting noise cross-correlations
and a finite steady-state concurrence does not exist, the previous interpretation is supported by
an analysis of the steady-state populations of the system. If the analysis is done in terms of
the populations in the local basis (e.g. |α1, α2〉, with α = L , R) the double-peaked structure
of figures 7(a) and (b) is hard to explain, since all local populations exhibit just a single
peak around resonance. However, considering the stationary populations in the Bell basis of
maximally entangled states, a different picture arises. Figure 8 shows the population of the
Bell states |8±

〉 [69], which written in terms of the occupation of the L/R dots of each DQD
read

|8±
〉 =

1
√

2
(|R1, R2〉 ± |L1, L2〉) . (11)

The occupation probability of these two states show a double peak structure as g becomes
larger. Importantly, these peaks occur asymmetrically such that each Bell state has maximum
occupation on either side of the resonance. The two-lobe structure of both the concurrence and
the cross-correlations thus correspond to the two maxima of the |8±

〉 Bell state populations.
The remaining Bell states

|9±
〉 =

1
√

2
(|R1, L2〉 ± |L1, R2〉) (12)

just show single peaks centred on resonance and presumably do not greatly contribute to the
overall form of the current cross-correlations.

5. Asymmetric coupling to the microwave resonator g1 6= g2

Finally, we also explore the effect of asymmetric values of the electron–photon coupling
strengths for each qubit, g1 6= g2. Experimentally, this asymmetry can be achieved by changing
both the capacitive coupling of each DQD to the microwave resonator Cc

i as well as the
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Figure 9. Colormap of (a) current across the first qubit, (b) cross-correlations F12

and (c) concurrence as a function of ε1 and g2, for fixed g1 = 0.008, and around
the two-qubit resonance. The dashed line indicate the renormalized two-qubit
resonance �1,eff = �2,eff. The rest of the parameters as in figure 7.

capacitance of each DQD to ground Cg
i , as the couplings scale as gi ∼ Cc

i /(C
c
i + Cg

i ) [8]. Our
motivation here is to explore the possibility of detecting the interaction-induced shifts directly
in transport. Further motivation comes from [70], which theoretically proposed the use of
inhomogeneous coupling between two-level systems and a single quantized mode to generate
and control multipartite entangled states.

The current as a function of ε1 and g2 is shown in figure 9(a) for the region around
ε1 ≈ −ε2. For increasing g2, the position of the resonance is shifted with respect to the initial
value for g1 = g2. As expected, this can be understood by means of the renormalization
of the intra-dot tunnelling coupling ti,eff in the effective Hamiltonian of equation (7). This

renormalization leads in turn to a change in the frequency of the qubits as �i,eff =

√
ε2

i + 4t2
i,eff.

Therefore, the current shows a dispersive shift at values of ε1 accordingly to the new, effective
qubit–qubit resonance condition given by �1,eff = �2,eff. The dispersive shift obtained with the
full numerics agrees with the one given by the effective Hamiltonian, represented by the dashed
line in figure 9. Measurements along these lines would constitute further proof of resonator-
induced interaction between qubits. The same dispersive shift is also observed in the shot noise
cross-correlations, figure 9(b), where again, the 2qb resonance in F12 splits for large enough
coupling.

Finally we present the same analysis for the concurrence in figure 9(c). Apart from the
shift, we can notice that, in general, the concurrence has larger values in comparison to the case
with g1 = g2, indicating that the asymmetry between the coupling parameters of each qubit with
the bosonic mode makes the qubit–qubit entanglement to be more robust.

6. Conclusions

We studied theoretically photon-mediated transport and the generation of steady-state
correlations between two open charge qubits defined in spatially separated DQDs which are
coupled to a common transmission line resonator. Our results demonstrate that the qubits
are entangled due to the indirect coupling induced by photons in the microwave resonator.
Considering that each qubit is open to electronic reservoirs, we have analysed their transport
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properties and found that they reveal the qubit–qubit interaction. In particular, we calculated the
zero-frequency shot noise and the current cross-correlations as a function of the level detuning of
one of the qubits, and observed the presence of different resonant features in the regions where
the qubit enters in resonance with the photon as well as with the other qubit. In the examples
we studied here, the quantum correlations involved in the transport of charge and which are
responsible of the signal in the cross-correlations, yield in a finite value for the concurrence
when the qubits interact due to off-resonant photons. Therefore, we propose that measurements
of current correlations could be used as a possible method for detecting entanglement and,
in general, qubit–qubit interactions mediated by the microwave resonator. This proposal is
motivated also in the context of recent experimental achievements demonstrating the coupling
of semiconductor QDs to microwave resonators [13, 15–18].

The model presented here constitutes a step further in the study of this kind of hybrid
systems, which can be relatively easily extended to several qubits. In general, this system
led us to explore the interplay between coherent interactions, entanglement and the effect of
dissipation and noise. Moreover, our model can also be applied to charge qubits defined by
Cooper-pair boxes or to systems in which the QDs are coupled to a nanoelectromechanical
resonator.

Finally, we can also mention that our results point to interesting future work in which the
DQDs parameters are systematically modified such that the degree of qubit–qubit entanglement
can be improved and even controlled.
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Appendix. Effective Hamiltonian

We start with the Hamiltonian for the isolated electronic system and resonator: H2 ≡ H0 +
V with H0 = Hel + Hres and V = He−res. We then move to the representation for the qubit
operators

σ̃ i
z =

εi

�i
σ i

z +
2ti

�i
σ i

x , σ̃ i
x =

εi

�i
σ i

x −
2ti

�i
σ i

z (A.1)

with frequency �i =

√
ε2

i + 4t2
i , which diagonalizes the electronic Hamiltonian Hel.

We assume that both DQDs are singly occupied and then use second-order perturbation
theory to find the matrix elements between states of the form |s1, s2, 0〉 which has an empty
cavity and qubits in states s1 and s2. In doing so we restrict intermediate excitations to states
with just a single photon, |s ′

1, s ′

2, 1〉.
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This gives the effective Hamiltonian

Heff =
1

2

∑
i

�i σ̃
i
z −

1

ωr

(
A1σ̃

1
z + A2σ̃

2
z

)2
+

1

2

∑
i

B2
i

(
1

�i − ωr

(
1 + σ̃ i

z

)
−

1

�i + ωr

(
1 − σ̃ i

z

))
+

1

2
B1 B2

∑
i

(
1

�i − ωr
−

1

�i + ωr

)
σ̃ 1

x σ̃ 2
x

−
1

2

∑
i

Ai Bi

(
1

�i − ωr
+

1

�i + ωr

)
σ̃ i

x

+
1

2
A1 B2

(
−

2

ωr
+

1

�2 − ωr
−

1

�2 + ωr

)
σ̃ 1

z σ̃r
2
x

+
1

2
A2 B1

(
−

2

ωr
+

1

�1 − ωr
−

1

�1 + ωr

)
σ̃ 1

x σ̃ 2
z (A.2)

with parameters

Ai =
giεi

�i
, Bi = −

2gi ti

�i
. (A.3)

Under the further assumptions that |�i − ωr| � g (dispersive limit) and |�i − ωr| � �i +
ωr (rotating wave approximation), we then obtain the effective Hamiltonian used in the main
text:

Heff =

∑
i

1

2
εiσ

i
z + tiσ

i
x +

g2
i ti

�i(�i − ωr)
σ i

x +
∑

i

g1g2t2
i

�2
i (�i − ωr)

σ 1
z σ 2

z −

∑
i 6= j

gi giεi t2
j

�2
j(� j − ωr)

σ i
z σ

j
x .

(A.4)
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