229 research outputs found

    Theory of mind impairment in patients with behavioural variant fronto-temporal dementia (bv-FTD) increases caregiver burden

    Get PDF
    Background: Theory of mind (ToM), the capacity to infer the intention, beliefs and emotional states of others, is frequently impaired in behavioural variant fronto-temporal dementia patients (bv-FTDp); however, its impact on caregiver burden is unexplored. Setting: National Institute of Neurological Disorders and Stroke, National Institutes of Health. Subjects: bv-FTDp (n = 28), a subgroup of their caregivers (n = 20) and healthy controls (n = 32). Methods: we applied a faux-pas (FP) task as a ToM measure in bv-FTDp and healthy controls and the Zarit Burden Interview as a measure of burden in patients' caregivers. Patients underwent structural MRI; we used voxel-based morphometry to examine relationships between regional atrophy and ToM impairment and caregiver burden. Results: FP task performance was impaired in bv-FTDp and negatively associated with caregiver burden. Atrophy was found in areas involved in ToM. Caregiver burden increased with greater atrophy in left lateral premotor cortex, a region associated in animal models with the presence of mirror neurons, possibly involved in empathy. Conclusion: ToM impairment in bv-FTDp is associated with increased caregiver burde

    A BIM-based theoretical framework for the integration of the asset End-of-Life phase

    Get PDF
    Due to the migration of industry from the use of traditional 2D CAD tools to Building Information Modelling (BIM) process, and the growing awareness of Construction and Demolition (C&D) waste issues, researchers are interested in compiling the use of BIM for C&D Waste issues. BIM is commonly used for the Design, Construction and Maintenance phases of an asset; however, the use of BIM for the End-of-Life management is still in its infancy. This paper proposes to reconsider the asset lifecycle by incorporating a sustainable End-of-Life, as a phase, in BIM context. Recommendations are given to push the BIM potential up to the asset End-of-Life management. Based on the results of a literature review assessing the current use of BIM for the asset End-of-Life, a conceptual framework was drawn. A set of eleven stakeholders, involved in the asset lifecycle, from inception to deconstruction were interviewed to improve the conceptual framework. The research reveals the impacts and barriers for the integration of the deconstruction phase into the asset lifecycle. Consequently, a theoretical framework for the asset lifecycle from inception to deconstruction in BIM environment is created to change the linear system to a circular economy.Peer reviewe

    Functional and evolutionary consequences of cranial fenestration in birds

    Get PDF
    Ostrich-like birds (Palaeognathae) show very little taxonomic diversity while their sister taxon (Neognathae) contains roughly 10,000 species. The main anatomical differences between the two taxa are in the crania. Palaeognaths lack an element in the bill called the lateral bar that is present in both ancestral theropods and modern neognaths, and have thin zones in the bones of the bill, and robust bony elements on the ventral surface of their crania. Here we use a combination of modeling and developmental experiments to investigate the processes that might have led to these differences. Engineering-based finite element analyses indicate that removing the lateral bars from a neognath increases mechanical stress in the upper bill and the ventral elements of the skull, regions that are either more robust or more flexible in palaeognaths. Surgically removing the lateral bar from neognath hatchlings led to similar changes. These results indicate that the lateral bar is load-bearing and suggest that this function was transferred to other bony elements when it was lost in palaeognaths. It is possible that the loss of the load-bearing lateral bar might have constrained diversification of skull morphology in palaeognaths and thus limited taxonomic diversity within the group. This is the peer reviewed version of the following article: Gussekloo, S. W., Berthaume, M. A., Pulaski, D. R., Westbroek, I. , Waarsing, J. H., Heinen, R. , Grosse, I. R. and Dumont, E. R. (2017), Functional and evolutionary consequences of cranial fenestration in birds. Evolution, 71: 1327-1338., which has been published in final form at 10.1111/evo.13210. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions

    Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer.

    Get PDF
    Breast cancer remains the leading cause of cancer death in women owing to metastasis and the development of resistance to established therapies. Macrophages are the most abundant immune cells in the breast tumor microenvironment and can both inhibit and support cancer progression. Thus, gaining a better understanding of how macrophages support cancer could lead to the development of more effective therapies. In this study, we find that breast cancer-associated macrophages express high levels of insulin-like growth factors 1 and 2 (IGFs) and are the main source of IGFs within both primary and metastatic tumors. In total, 75% of breast cancer patients show activation of insulin/IGF-1 receptor signaling and this correlates with increased macrophage infiltration and advanced tumor stage. In patients with invasive breast cancer, activation of Insulin/IGF-1 receptors increased to 87%. Blocking IGF in combination with paclitaxel, a chemotherapeutic agent commonly used to treat breast cancer, showed a significant reduction in tumor cell proliferation and lung metastasis in pre-clinical breast cancer models compared to paclitaxel monotherapy. Our findings provide the rationale for further developing the combination of paclitaxel with IGF blockers for the treatment of invasive breast cancer, and Insulin/IGF1R activation and IGF+ stroma cells as potential biomarker candidates for further evaluation

    Fertility preservation in boys : recent developments and new insights

    Get PDF
    BACKGROUND: Infertility is an important side effect of treatments used for cancer and other non-malignant conditions in males. This may be due to the loss of spermatogonial stem cells (SSCs) and/or altered functionality of testicular somatic cells (e.g. Sertoli cells, Leydig cells). Whereas sperm cryopreservation is the first-line procedure to preserve fertility in post-pubertal males, this option does not exist for prepubertal boys. For patients unable to produce sperm and at high risk of losing their fertility, testicular tissue freezing is now proposed as an alternative experimental option to safeguard their fertility. OBJECTIVE AND RATIONALE: With this review, we aim to provide an update on clinical practices and experimental methods, as well as to describe patient management inclusion strategies used to preserve and restore the fertility of prepubertal boys at high risk of fertility loss. SEARCH METHODS: Based on the expertise of the participating centres and a literature search of the progress in clinical practices, patient management strategies and experimental methods used to preserve and restore the fertility of prepubertal boys at high risk of fertility loss were identified. In addition, a survey was conducted amongst European and North American centres/networks that have published papers on their testicular tissue banking activity. OUTCOMES: Since the first publication on murine SSC transplantation in 1994, remarkable progress has been made towards clinical application: cryopreservation protocols for testicular tissue have been developed in animal models and are now offered to patients in clinics as a still experimental procedure. Transplantation methods have been adapted for human testis, and the efficiency and safety of the technique are being evaluated in mouse and primate models. However, important practical, medical and ethical issues must be resolved before fertility restoration can be applied in the clinic. Since the previous survey conducted in 2012, the implementation of testicular tissue cryopreservation as a means to preserve the fertility of prepubertal boys has increased. Data have been collected from 24 co-ordinating centres worldwide, which are actively offering testis tissue cryobanking to safeguard the future fertility of boys. More than 1033 young patients (age range 3 months to 18 years) have already undergone testicular tissue retrieval and storage for fertility preservation. LIMITATIONS, REASONS FOR CAUTION: The review does not include the data of all reproductive centres worldwide. Other centres might be offering testicular tissue cryopreservation. Therefore, the numbers might be not representative for the entire field in reproductive medicine and biology worldwide. The key ethical issue regarding fertility preservation in prepubertal boys remains the experimental nature of the intervention. WIDER IMPLICATIONS: The revised procedures can be implemented by the multi-disciplinary teams offering and/or developing treatment strategies to preserve the fertility of prepubertal boys who have a high risk of fertility loss.Peer reviewe

    Complementation of the ionizing radiation sensitivity, DNA end binding, and V(D)J recombination defects of double-strand break repair mutants by the p86 Ku autoantigen.

    Get PDF
    Two ionizing radiation-sensitive (IRs) and DNA double-strand break (DSB) mutants, sxi-3 and sxi-2, were shown to be severely deficient in a DNA end binding activity, similar to a previously described activity of the Ku autoantigen, correlating with the xrs (XRCC5) mutations. Cell fusions with xrs-6, another IRs, DSB repair-deficient cell line, defined these sxi mutants in the XRCC5 group. sxi-3 cells have low expression levels of the p86Ku mRNA. Introduction of the Ku p86 gene, but not the p70 Ku gene, complemented the IRs, DNA end binding, and variable (diversity) joining [V(D)J] recombination signal and coding junction deficiencies of sxi-3. Thus, the p86 Ku gene product is essential for DSB repair and V(D)J recombination

    The antimetastatic and antiangiogenesis effects of kefir water on murine breast cancer cells

    Get PDF
    Background. Kefir is a unique cultured product that contains beneficial probiotics. Kefir culture from other parts of the world exhibits numerous beneficial qualities such as anti-inflammatory, immunomodulation, and anticancer effects. Nevertheless, kefir cultures from different parts of the world exert different effects because of variation in culture conditions and media. Breast cancer is the leading cancer in women, and metastasis is the major cause of death associated with breast cancer. The antimetastatic and antiangiogenic effects of kefir water made from kefir grains cultured in Malaysia were studied in 4T1 breast cancer cells. Methods. 4T1 cancer cells were treated with kefir water in vitro to assess its antimigration and anti-invasion effects. BALB/c mice were injected with 4T1 cancer cells and treated orally with kefir water for 28 days. Results. Kefir water was cytotoxic toward 4T1 cells at IC50 (half-maximal inhibitory concentration) of 12.5 and 8.33 mg/mL for 48 and 72 hours, respectively. A significant reduction in tumor size and weight (0.9132 ± 0.219 g) and a substantial increase in helper T cells (5-fold) and cytotoxic T cells (7-fold) were observed in the kefir water–treated group. Proinflammatory and proangiogenic markers were significantly reduced in the kefir water–treated group. Conclusions. Kefir water inhibited tumor proliferation in vitro and in vivo mainly through cancer cell apoptosis, immunomodulation by stimulating T helper cells and cytotoxic T cells, and anti-inflammatory, antimetastatic, and antiangiogenesis effects. This study brought out the potential of the probiotic beverage kefir water in cancer treatment

    Tocotrienols are good adjuvants for developing cancer vaccines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dendritic cells (DCs) have the potential for cancer immunotherapy due to their ability to process and present antigens to T-cells and also in stimulating immune responses. However, DC-based vaccines have only exhibited minimal effectiveness against established tumours in mice and humans. The use of appropriate adjuvant enhances the efficacy of DC based cancer vaccines in treating tumours.</p> <p>Methods</p> <p>In this study we have used tocotrienol-rich fraction (TRF), a non-toxic natural compound, as an adjuvant to enhance the effectiveness of DC vaccines in treating mouse mammary cancers. In the mouse model, six-week-old female BALB/c mice were injected subcutaneously with DC and supplemented with oral TRF daily (DC+TRF) and DC pulsed with tumour lysate from 4T1 cells (DC+TL). Experimental mice were also injected with DC pulsed with tumour lysate and supplemented daily with oral TRF (DC+TL+TRF) while two groups of animal which were supplemented daily with carrier oil (control) and with TRF (TRF). After three times vaccination, mice were inoculated with 4T1 cells in the mammary breast pad to induce tumour.</p> <p>Results</p> <p>Our study showed that TRF in combination with DC pulsed with tumour lysate (DC+TL+TRF) injected subcutaneously significantly inhibited the growth of 4T1 mammary tumour cells as compared to control group. Analysis of cytokines production from murine splenocytes showed significant increased productions of IFN-γ and IL-12 in experimental mice (DC+TL+TRF) compared to control, mice injected with DC without TRF, mice injected with DC pulsed with tumour lysate and mice supplemented with TRF alone. Higher numbers of cytotoxic T cells (CD8) and natural killer cells (NK) were observed in the peripheral blood of TRF adjuvanted DC pulsed tumour lysate mice.</p> <p>Conclusion</p> <p>Our study show that TRF has the potential to be an adjuvant to augment DC based immunotherapy.</p

    Imagable 4T1 model for the study of late stage breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The 4T1 mouse mammary tumor cell line is one of only a few breast cancer models with the capacity to metastasize efficiently to sites affected in human breast cancer. Here we describe two 4T1 cell lines modified to facilitate analysis of tumor growth and metastasis and evaluation of gene function <it>in vivo</it>. New information regarding the involvement of innate and acquired immunity in metastasis and other characteristics of the model relevant to its use in the study of late stage breast cancer are reported.</p> <p>Methods</p> <p>The lines were engineered for stable expression of firefly luciferase to allow tracking and quantitation of the cells <it>in vivo</it>. Biophotonic imaging was used to characterize growth and metastasis of the lines <it>in vivo </it>and an improved gene expression approach was used to characterize the basis for the metastatic phenotype that was observed.</p> <p>Results</p> <p>Growth of cells at the primary site was biphasic with metastasis detected during the second growth phase 5–6 weeks after introduction of the cells. Regression of growth, which occurred in weeks 3–4, was associated with extensive necrosis and infiltration of leukocytes. Biphasic tumor growth did not occur in BALB/c SCID mice indicating involvement of an acquired immune response in the effect. Hematopoiesis in spleen and liver and elevated levels of circulating leukocytes were observed at week 2 and increased progressively until death at week 6–8. Gene expression analysis revealed an association of several secreted factors including colony stimulatory factors, cytokines and chemokines, acute phase proteins, angiogenesis factors and ECM modifying proteins with the 4T1 metastatic phenotype. Signaling pathways likely to be responsible for production of these factors were also identified.</p> <p>Conclusion</p> <p>The production of factors that stimulate angiogenesis and ECM modification and induce hematopoiesis, recruitment and activation of leukocytes suggest that 4T1 tumor cells play a more direct role than previously appreciated in orchestrating changes in the tumor environment conducive to tumor cell dissemination and metastasis. The new cell lines will greatly facilitate the study of late stage breast and preclinical assessment of cancer drugs and other therapeutics particularly those targeting immune system effects on tumor metastasis.</p
    corecore