138 research outputs found

    Macrophages from the synovium of active rheumatoid arthritis exhibit an activin A-dependent pro-inflammatory profile

    Get PDF
    12 p.-7 fig.Rheumatoid arthritis (RA) is a chronic inflammatory disease whose pathogenesis and severity correlates with the presence of macrophage-derived pro-inflammatory cytokines within the inflamed synovium. Macrophage-derived cytokines fuel the pathological processes in RA and are targets of clinically successful therapies. However, although macrophage polarization determines cytokine production, the polarization state of macrophages in RA joints remains poorly defined. To dissect the molecular basis for the tissue-damaging effects of macrophages in RA joints, we undertook the phenotypic and transcriptomic characterization of ex vivo isolated CD14(+) RA synovial fluid (RA-SF) macrophages. Flow cytometry and gene profiling indicated that RA-SF macrophages express pro-inflammatory polarization markers (MMP12, EGLN3, CCR2), lack expression of markers associated with homeostatic and anti-inflammatory polarization (IGF1, HTR2B) and exhibit a transcriptomic profile that resembles the activin A-dependent gene signature of pro-inflammatory in vitro-generated macrophages. In fact, high levels of Smad-activating activin A were found in RA-SF and, accordingly, the Smad signalling pathway was activated in ex vivo-isolated RA-SF macrophages. In vitro experiments on monocytes and macrophages indicated that RA-SF promoted the acquisition of pro-inflammatory markers (INHBA, MMP12, EGLN3, CCR2) but led to a significant reduction in the expression of genes associated with homeostasis and inflammation resolution (FOLR2, SERPINB2, IGF1, CD36), thus confirming the pro-inflammatory polarization ability of RA-SF. Importantly, the macrophage-polarizing ability of RA-SF was inhibited by an anti-activin A-neutralizing antibody, thus demonstrating that activin A mediates the pro-inflammatory macrophage-polarizing ability of RA-SF. Moreover, and in line with these findings, multicolour immunofluorescence evidenced that macrophages within RA synovial membranes (RA-SM) also express pro-inflammatory polarization markers whose expression is activin A-dependent. Altogether, our results demonstrate that macrophages from RA synovial fluids and membranes exhibit an MMP12(+) EGLN3(+) CCR2(+) pro-inflammatory polarization state whose acquisition is partly dependent on activin A from the synovial fluid.This study was supported by Instituto de Salud Carlos III (Grant Nos PI11/00165, to APK, andPI13/01454, to PSM); Comunidad de Madrid/FEDER(RAPHYME Programme; Grant No. S2010/BMD2350,to JLP, ALC and APK); Ministerio de Ciencia e Innovación (Grant Nos RIER RD12/009, to IGA, PSM, JLP,ALC and APK, and SAF2011-23801, to ALC); FIB-HGM (to APK); and Ministerio de Economia y Competitividad (Juan de la Cierva Contract No. JCI-2011-09836and a Miguel Servet contract, to EI and GC).Peer reviewe

    RUNX/AML and C/EBP factors regulate CD11a integrin expression in myeloid cells through overlapping regulatory elements

    Get PDF
    10 Figures. The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked ‘‘advertisement’’ in accordance with 18 U.S.C. section 1734.The CD11a/CD18 (leukocyte function-associated antigen 1 [LFA-1]) integrin mediates critical leukocyte adhesive interactions during immune and inflammatory responses. The CD11a promoter directs CD11a/CD18 integrin expression, and its activity in lymphoid cells depends on a functional RUNX1/AML-1–binding site (AML-110) within the MS7 sequence. We now report that MS7 contains a C/EBP-binding site (C/EBP-100), which overlaps with AML-110 and is bound by C/EBP factors in myeloid cells. C/EBP and RUNX/AML factors compete for binding to their respective cognate elements and bind to the CD11a promoter MS7 sequence in a cell lineage- and differentiation-dependent manner. In myeloid cells MS7 is primarily recognized by C/EBP factors in proliferating cells whereas RUNX/AML factors (especially RUNX3/AML-2) bind to MS7 in differentiated cells. RUNX3/AML-2 binding to the CD11a promoter correlates with increased RUNX3/AML-2 protein levels and enhanced CD11a/CD18 cell surface expression. The relevance of the AML-110 element is underscored by the ability of AML-1/ETO to inhibit CD11a promoter activity, thus explaining the low CD11a/CD18 expression in t(8;21)–containing myeloid leukemia cells. Therefore, the expression of the CD11a/CD18 integrin in myeloid cells is determined through the differential occupancy of the CD11a proximal promoter by transcription factors implicated in the pathogenesis of myeloid leukemia.From the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain; Clínica Universitaria, Universidad de Navarra, Spain; Institute of Human Genetics, Aarhus, Denmark; Hospital Universitario Gregorio Maranón, Madrid, Spain; University of Colorado Health Sciences Center, Denver; and Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot Israel. Supported by grants 08.3/0026/2000.1 from Comunidad Auto´noma de Madrid, 01/0063-01 from Fondo de Investigaciones Sanitarias, and SAF2002-04615- C02-01 from Ministerio de Ciencia y Tecnología (A.L.C.). We gratefully acknowledge Drs Ana Aranda and Aurora Sánchez-Pacheco for their very generous help with ChIP assays.Peer reviewe

    Frequency of Th17 CD4+ T cells in early rheumatoid arthritis: A marker of anti-CCP seropositivity

    Get PDF
    Objective: To examine the frequency and phenotype of Th17 cells in the peripheral blood of early RA (eRA) patients. Methods: CD4+ T cells were isolated from the peripheral blood of 33 eRA patients, 20 established RA patients and 53 healthy controls (HC), and from the synovial fluid of 20 established RA patients (RASF), by ficoll-hypaque gradient and magnetical negative selection. After polyclonal stimulation, the frequency of Th17 and Th1 cells was determined by flow cytometry and concentrations of IL-17, IFN-γ, TNF-α and IL-10 were measured by ELISA in cell-free supernatants. Results: When all of our eRA patients were analyzed together, a significantly lower percentage of circulating Th17 cells and a lower CD4-derived IL-17 secretion were observed in comparison with HC. However, after stratifying by anti-CCP antibody status, circulating Th17 cells were decreased in anti-CCP(+) but not in anti-CCP(-)-eRA. All Th17 cells were CD45RO+CD45RA- and CCR6+. Dual Th17/Th1 cells were also exclusively decreased in anti-CCP(+)-eRA. Circulating Th17 and Th17/Th1 cells were negatively correlated with anti-CCP titres. When anti-CCP(+)-eRA patients were retested one year after initiating treatment with oral methotrexate, their circulating Th17 frequency was no longer different from HC. Of note, the percentage of circulating Th1 cells and the secretion of CD4-derived IFN-γ, TNF-α and IL-10 were not different between eRA patients and HC. In established RA patients, circulating Th17 and T17/Th1 cell frequencies were comparable to HC. In RASF, both Th17 and Th1 cells were increased when compared with blood of eRA patients, established RA patients and HC. Conclusion: Decreased circulating Th17 levels in eRA seem to be a marker of anti-CCP seropositivity, and return to levels observed in healthy controls after treatment with methotrexateThis work was supported by Ministerio de Ciencia e Innovación grant SAF 2009-07100, (http://www.idi.mineco.gob.es/portal/site/MICINN) and by RETICS Program, RD08/0075 (RIER) from ‘‘Instituto de Salud Carlos III’’ (ISCIII) (http://www.isciii.es/

    The neck region of the C-type lectin DC-SIGN regulates its surface spatiotemporal organization and virus-binding capacity on antigen presenting cells

    Get PDF
    The C-type lectin DC-SIGN expressed on dendritic cells (DCs) facilitates capture and internalization of a plethora of different pathogens. Although it is known that DC-SIGN organizes in nanoclusters at the surface of DCs, the molecular mechanisms responsible for this well defined nanopatterning and role in viral binding remain enigmatic. By combining biochemical and advanced biophysical techniques, including optical superresolution and single particle tracking, we demonstrate that DC-SIGN intrinsic nanoclustering strictly depends on its molecular structure. DC-SIGN nanoclusters exhibited free, Brownian diffusion on the cell membrane. Truncation of the extracellular neck region, known to abrogate tetramerization, significantly reduced nanoclustering and concomitantly increased lateral diffusion. Importantly, DC-SIGN nanocluster dissolution exclusively compromised binding to nanoscale size pathogens. Monte Carlo simulations revealed that heterogeneity on nanocluster density and spatial distribution confers broader binding capabilities to DC-SIGN. As such, our results underscore a direct relationship between spatial nanopatterning, driven by intermolecular interactions between the neck regions, and receptor diffusion to provide DC-SIGN with the exquisite ability to dock pathogens at the virus length scale. Insight into how virus receptors are organized prior to virus binding and how they assemble into functional platforms for virus docking is helpful to develop novel strategies to prevent virus entry and infectio

    AT514, a cyclic depsipeptide from Serratia marcescens, induces apoptosis of B-chronic lymphocytic leukemia cells. Interference with the Akt/NF-kB survival pathway

    Get PDF
    8 páginas, 5 figuras -- PAGS nros. 572-579Clinical treatment of B-cell chronic lymphocytic leukemia (B-CLL) is limited by the progressive drug resistance and nonselectivity of most drugs towards malignant cells. Depsipeptides are present in certain bacteria and display potent antitumor activity. We have studied the effect of the novel cyclodepsipeptide AT514 (serratamolide) from Serratia marcescens on B-CLL cell viability. AT514 induced apoptosis of B-CLL cells from the 21 patients studied, as confirmed by Annexin-V binding and nuclei condensation, with an average IC50 of 13 M. AT514 was effective in those B-CLL cases resistant to fludarabine, but had no effect on normal PBL. AT514 preferentially activated the intrinsic apoptotic pathway, as evidenced by loss of mitochondrial membrane potential, release of cytochrome c and activation of caspase-9 and -3, but not of caspase-8. Importantly, AT514 interfered with phosphatidylinositol-3 kinase and protein kinase C survival signals since it increased the apoptotic effect of LY294002 and BisI inhibitors, and induced Akt dephosphorylation at Ser 473. AT514 also decreased NF-B activity by dramatically reducing the levels of p65 in B-CLL. This was confirmed on functional assays using NF-B-luc-transfected Raji cells and transgenic mice. Our results establish that AT514 induces apoptosis of primary B-CLL cells and could be useful for clinical treatment of this malignancyThis work was supported by grants 08.3/0030.1/2003 from the Comunidad Autónoma de Madrid, SAF2003-00824 from the Ministerio de Ciencia y Tecnología (MCyT), and 01/1183 from Fondo de Investigación Sanitaria (to AGP); and CIDEM Grant 301888 (Generalitat de Catalunya)/Fundació Bosch i Gimpera, to RPT). E Escobar and E López-Martín were supported by fellowships from MCyTPeer reviewe

    RUNX/AML and C/EBP factors regulate CD11a integrin expression in myeloid cells through overlapping regulatory elements

    Get PDF
    The CD11a/CD18 (leukocyte functionassociated antigen 1 [LFA-1]) integrin mediates critical leukocyte adhesive interactions during immune and inflammatory responses. The CD11a promoter directs CD11a/CD18 integrin expression, and its activity in lymphoid cells depends on a functional RUNX1/AML-1–binding site (AML-110) within the MS7 sequence. We now report that MS7 contains a C/EBPbinding site (C/EBP-100), which overlaps with AML-110 and is bound by C/EBP factors in myeloid cells. C/EBP and RUNX/ AML factors compete for binding to their respective cognate elements and bind to the CD11a promoter MS7 sequence in a cell lineage- and differentiation-dependent manner. In myeloid cells MS7 is primarily recognized by C/EBP factors in proliferating cells whereas RUNX/AMLfactors (especially RUNX3/AML-2) bind to MS7 in differentiated cells. RUNX3/AML-2 binding to the CD11a promoter correlates with increased RUNX3/AML-2 protein levels and enhanced CD11a/CD18 cell surface expression. The relevance of the AML-110 element is underscored by the ability of AML-1/ETO to inhibit CD11a promoter activity, thus explaining the low CD11a/CD18 expression in t(8;21)–containing myeloid leukemia cells. Therefore, the expression of the CD11a/CD18 integrin in myeloid cells is determined through the differential occupancy of the CD11a proximal promoter by transcription factors implicated in the pathogenesis of myeloid leukemia

    RUNX3 Regulates Intercellular Adhesion Molecule 3 (ICAM-3) Expression during Macrophage Differentiation and Monocyte Extravasation

    Get PDF
    The adhesion molecule ICAM-3 belongs to the immunoglobulin gene superfamily and functions as a ligand for the β2 integrins LFA-1, Mac-1 and αdβ2. The expression of ICAM-3 is restricted to cells of the hematopoietic lineage. We present evidences that the ICAM-3 gene promoter exhibits a leukocyte-specific activity, as its activity is significantly higher in ICAM-3+ hematopoietic cell lines. The activity of the ICAM-3 gene promoter is dependent on the occupancy of RUNX cognate sequences both in vitro and in vivo, and whose integrity is required for RUNX responsiveness and for the cooperative actions of RUNX with transcription factors of the Ets and C/EBP families. Protein analysis revealed that ICAM-3 levels diminish upon monocyte-derived macrophage differentiation, monocyte transendothelial migration and dendritic cell maturation, changes that correlate with an increase in RUNX3. Importantly, disruption of RUNX-binding sites led to enhanced promoter activity, and small interfering RNA-mediated reduction of RUNX3 expression resulted in increased ICAM-3 mRNA levels. Altogether these results indicate that the ICAM-3 gene promoter is negatively regulated by RUNX transcription factors, which contribute to the leukocyte-restricted and the regulated expression of ICAM-3 during monocyte-to-macrophage differentiation and monocyte extravasation

    Signal integration and transcriptional regulation of the inflammatory response mediated by the GM-/MCSF signaling axis in human monocytes

    Get PDF
    In recent years, the macrophage colony-stimulating factor (M-CSF) and granulocyte-macrophage CSF (GM-CSF) cytokines have been identified as opposing regulators of the inflammatory program. However, the two cytokines are simultaneously present in the inflammatory milieu, and it is not clear how cells integrate these signals. In order to understand the regulatory networks associated with the GM/M-CSF signaling axis, we analyzed DNA methylation in human monocytes. Our results indicate that GM-CSF induces activation of the inflammatory program and extensive DNA methylation changes, while M-CSF-polarized cells are in a less differentiated state. This inflammatory program is mediated via JAK2 associated with the GM-CSF receptor and the downstream extracellular signal-regulated (ERK) signaling. However, PI3K signaling is associated with a negative regulatory loop of the inflammatory program and M-CSF autocrine signaling in GM-CSF-polarized monocytes. Our findings describe the regulatory networks associated with the GM/M-CSF signaling axis and how they contribute to the establishment of the inflammatory program associated with monocyte activation.This work was supported by grants from the Plan Nacional de I+D+I 2013– 2016 ISCIII (Institute of Health Carlos III; PI16/01318, PI17/01244, PI17/ 0119, PI16/1900, and PI19/00184); the Gobierno del Principado de Asturias; the PCTI-Plan de Ciencia, Tecnologı´a e Innovacio´ n 2013-2017 (grant IDI/ 2018/144); FEDER ‘‘Funding Program of the European Union’’; the Red Española de Investigación Renal (REDinREN) (RD16/0009/0020, RD016/0009/002, and RD016/0009/001); the Agencia Estatal de Investigación (AEI) (ayuda Juan de la Cierva-Incorporaciόn; IJCI-2017-33347 to R.M.R.); and the Instituto de Salud Carlos III (Contratos Sara Borrell; CD16/00033 to C.H.). CIC bioGUNE support was provided by the Basque Department of Industry, Tourism and Trade (Etortek and Elkartek programs), the Innovation Technology Department of Bizkaia County, the CIBERehd Network, and Spanish MINECO, the Severo Ochoa Excellence Accreditation (SEV-2016-0644

    Activation of LXR nuclear receptors impairs the anti-inflammatory gene and functional profile of M-CSF-dependent human monocyte-derived macrophages

    Get PDF
    13 p.-7 fig.Liver X Receptors (LXR) control cholesterol metabolism and exert anti-inflammatory actions but their contribution to human macrophage polarization remains unclear. The LXR pathway is enriched in pro-inflammatory macrophages from rheumatoid arthritis as well as in tumors-associated macrophages from human tumors. We now report that LXR activation inhibits the anti-inflammatory gene and functional profile of M-CSF-dependent human macrophages, and prompts the acquisition of a pro-inflammatory gene signature, with both effects being blocked by an LXR inverse agonist. Mechanistically, the LXR-stimulated macrophage polarization shift correlates with diminished expression of MAFB and MAF, which govern the macrophage anti-inflammatory profile, and with enhanced release of activin A. Indeed, LXR activation impaired macrophage polarization in response to tumor-derived ascitic fluids, as well as the expression of MAF- and MAFB-dependent genes. Our results demonstrate that LXR activation limits the anti-inflammatory human macrophage polarization and prompts the acquisition of an inflammatory transcriptional and functional profile.This work was supported by grants from Ministerio de Ciencia, Investigación y Universidades (SAF2017-83785-R to MV and ALC), Ministerio de Ciencia, Innovación y Universidades y Fondo Europeo de Desarrollo Regional (FEDER) (SAF2017-90604-REDT and PID2019-104284RB-I00/AEI/10.13039/501100011033 to AC), Fundación La Marató/TV3 (Grant 201619.31 to ALC), Instituto de Salud Carlos III (Grant PI20/00316 to AP-K), and Red de Investigación en Enfermedades Reumáticas (RIER, RD16/0012/0007) from Instituto de Salud Carlos III and cofinanced by the European Regional Development Fund “A way to achieve Europe” (ERDF) to AP-K and ALC. This work was also supported in part by a grant from the Dutch Society for Clinical Chemistry (NVKC) to IM and R. de Jonge. AGA was funded by FPU predoctoral fellowship (FPU16/02756) from Ministerio de Universidades.Peer reviewe
    corecore