62 research outputs found

    Judge\u27s campaign Song

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/3109/thumbnail.jp

    Oceanic distribution of inorganic germanium relative to silicon: Germanium discrimination by diatoms

    Get PDF
    Seventeen inorganic germanium and silicon concentration profiles collected from the Atlantic, southwest Pacific, and Southern oceans are presented. A plot of germanium concentration versus silicon concentration produced a near-linear line with a slope of 0.760 × 10−6 (±0.004) and an intercept of 1.27 (±0.24) pmol L−1 (r2 = 0.993, p < 0.001). When the germanium-to-silicon ratios (Ge/Si) were plotted versus depth and/or silicon concentrations, higher values are observed in surface waters (low in silicon) and decreased with depth (high in silicon). Germanium-to-silicon ratios in diatoms (0.608–1.03 × 10−6) and coupled seawater samples (0.471–7.46 × 10−6) collected from the Southern Ocean are also presented and show clear evidence for Ge/Si fractionation between the water and opal phases. Using a 10 box model (based on PANDORA), Ge/Si fractionation was modeled using three assumptions: (1) no fractionation, (2) fractionation using a constant distribution coefficient (KD) between the water and solid phase, and (3) fractionation simulated using Michaelis-Menten uptake kinetics for germanium and silicon via the silicon uptake system. Model runs indicated that only Ge/Si fractionation based on differences in the Michaelis-Menten uptake kinetics for germanium and silicon can adequately describe the data. The model output using this fractionation process produced a near linear line with a slope of 0.76 × 10−6 and an intercept of 0.92 (±0.28) pmol L−1, thus reflecting the oceanic data set. This result indicates that Ge/Si fractionation in the global ocean occurs as a result of subtle differences in the uptake of germanium and silicon via diatoms in surface waters

    Die GmbH als neugeschaffene Form auslaendischer Investition in Jugoslawien: Vorbedingungen, gesetzliche Regelungen, rechtliche Probleme ; ein Beitrag zur wirtschaftlichen Ost-West-Zusammenarbeit in der Umbruchphase

    No full text
    SIGLEAvailable from Bibliothek des Instituts fuer Weltwirtschaft, ZBW, Duesternbrook Weg 120, D-24105 Kiel A 188984 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Templar march /

    No full text

    Croissance invasive chez un champignon pathogĂšne de l’Homme : forces mĂ©caniques et rĂ©organisation cellulaire

    No full text
    The dimorphic fungi Candida albicans is a major human pathogen that causes life-threatening infections for immunocompromised patients. I have investigated C. albicans invasive filamentous growth, in collaboration with physicists, in particular the mechanical forces during this process, and quantitated the effects of these forces on cell morphology. Furthermore, I have examined the function of a filament tip cluster of vesicles, known as a Spitzenkörper, in the regulation of growth and cell morphology. Physical forces generated by C. albicans filamentous growth are likely to be critical for host tissue penetration, as well as escape from host immune cells. We have used the polymer polydimethylsiloxane (PDMS) to generate microchambers with different stiffness, similar to that of host cells and tissues. I have examined C. albicans filamentous growth in these confined chambers, in order to determine the biophysical properties of growth and substrate invasion. Using time lapse microscopy, I showed that the percentage of invasive hyphae decreased with an increase in PDMS stiffness, and determined a stiffness threshold, in which hyphae are unable to invade - likely the growth-stalling force. During invasive growth, there was a striking reduction in filament extension rate, compared to surface growth, which was dependent on PDMS stiffness. Furthermore, during this process, I observed a cell morphology change, i.e. a significant increase in cell diameter and a concomitant decrease in cell compartment length, resulting in cell volumes that were largely indistinguishable from that of surface growing cells. This morphology change was associated with a striking increase in the level of active Cdc42, the master regulator of polarity, at the hyphal tip and a concomitant depolarization of active Rho1, the glucan-synthase regulator, during invasive growth. These results indicate that changes in cell morphology during invasive growth are not due to depolarization or destabilization of active Cdc42. Rather, additional analyses suggest that mechanical forces, i.e. compression, are largely responsible for these morphological changes. The Spitzenkörper, which is a cluster of vesicles located at the filament apex adjacent to the plasma membrane, has been observed in a range of filamentous fungi. In C. albicans, electron microscopy studies have revealed that the Spitzenkörper is comprised of a uniform population of vesicles, however little was known regarding the function of this structure during filamentous growth. I have shown that the C. albicans Spitzenkörper is composed entirely of secretory vesicles. I have investigated the function of the Spitzenkörper using mutants and synthetic physical interaction approaches. Perturbation of the Spitzenkörper resulted in altered filament morphology and growth rate, strikingly an increase in filament diameter and concomitant increased growth rate was observed. Furthermore, deletion of a Spitzenkörper component dramatically reduced invasive growth. Together these results indicate that the Spitzenkörper regulates the region of new plasma membrane insertion, i.e. the ability to focus growth, and suggest that an increase in the flux of secretory vesicles compensates for less focused membrane addition. In summary, my studies reveal that mechanical forces affect C. albicans morphology and substrate invasive ability, and that the Spitzenkörper is the central link between filament morphology and growth rate, as well as substrate invasionCandida albicans est un champignon pathogĂšne de l’Homme qui provoque des infections potentiellement mortelles chez les patients immunodĂ©primĂ©s. J'ai Ă©tudiĂ© la croissance filamenteuse invasive de C. albicans, en collaboration avec des physiciens, - en particulier les forces mĂ©caniques lors de ce processus -, et quantifiĂ© les effets de ces forces sur la morphologie cellulaire. En outre, j'ai examinĂ© la fonction d'un cluster de vĂ©sicules Ă  l’apex du filament, appelĂ© Spitzenkörper, dans la rĂ©gulation de la croissance et de la morphologie cellulaire. Les forces physiques gĂ©nĂ©rĂ©es par la croissance filamenteuse de C. albicans sont critiques pour pĂ©nĂ©trer les tissus de l'hĂŽte et pour Ă©chapper aux cellules immunitaires. Nous avons utilisĂ© le polymĂšre polydimĂ©thylsiloxane (PDMS) pour gĂ©nĂ©rer des micro-chambres de rigiditĂ© diffĂ©rente, similaire Ă  celle des tissus de l’hĂŽte. J'ai examinĂ© la croissance filamenteuse de C. albicans dans ces chambres confinĂ©es, afin de dĂ©terminer les propriĂ©tĂ©s biophysiques de la croissance invasive. En utilisant la microscopie en temps rĂ©el, j'ai montrĂ© que le pourcentage de filaments invasifs diminuait avec une augmentation de la rigiditĂ© du PDMS, et dĂ©terminĂ© un seuil de rigiditĂ© pour lequel les filaments sont incapables d'envahir - probablement la « growth-stalling force ». Pendant la croissance invasive, la vitesse d'extension du filament est rĂ©duite, par rapport Ă  une croissance en surface non invasive, en fonction de la rigiditĂ© du PDMS. De plus, au cours de ce processus, j'ai observĂ© un changement de morphologie cellulaire, avec une augmentation significative du diamĂštre et une diminution concomitante de la longueur du compartiment cellulaire, rĂ©sultant en un volume similaire Ă  celui des cellules en croissance non invasive. Ce changement de morphologie est associĂ© Ă  une augmentation dramatique du taux de Cdc42 activĂ©, rĂ©gulateur clĂ© de la polaritĂ©, Ă  l'apex du filament et Ă  une dĂ©polarisation de Rho1 activĂ©, rĂ©gulateur de la glucan-synthase. Ces rĂ©sultats indiquent que les changements de morphologie cellulaire pendant la croissance invasive ne sont pas dus Ă  la dĂ©polarisation ou Ă  la dĂ©stabilisation de Cdc42 activĂ©. Au contraire, des analyses complĂ©mentaires suggĂšrent que des forces mĂ©caniques, en particulier la compression, sont largement responsables de ces changements morphologiques.Le Spitzenkörper, cluster de vĂ©sicules situĂ© Ă  l’apex du filament, est observĂ© chez une variĂ©tĂ© de champignons filamenteux. Chez C. albicans, des Ă©tudes de microscopie Ă©lectronique ont rĂ©vĂ©lĂ© que le Spitzenkörper est composĂ© d'une population uniforme de vĂ©sicules, mais la fonction de cette structure pendant la croissance filamenteuse est peu connue. J'ai montrĂ© que ce Spitzenkörper est entiĂšrement composĂ© de vĂ©sicules de sĂ©crĂ©tion et Ă©tudiĂ© sa fonction en utilisant des mutants et des approches d'interactions forcĂ©es. Perturber cette structure entraĂźne une modification de la morphologie du filament et de la vitesse de croissance; l’augmentation du diamĂštre du filament est associĂ©e Ă  une augmentation concomitante de la vitesse de croissance. En outre, la dĂ©lĂ©tion d'un des composants du Spitzenkörper rĂ©duit considĂ©rablement la croissance invasive. Dans l’ensemble, ces rĂ©sultats indiquent que cette structure rĂ©gule la rĂ©gion d'insertion de nouveau matĂ©riel membranaire, donc focalise la croissance, et suggĂšrent qu'une augmentation du flux de vĂ©sicules de sĂ©crĂ©tion compense pour une moindre focalisation de l’ajout de matĂ©riel membranaire. Dans l’ensemble, mes Ă©tudes rĂ©vĂšlent que les forces mĂ©caniques affectent la morphologie de C. albicans et sa capacitĂ© d‘invasion, et que le Spitzenkörper est le lien central entre morphologie du filament d’une part et vitesse de croissance et invasion filamenteuse, d’autre part

    Croissance invasive chez un champignon pathogĂšne de l’Homme : forces mĂ©caniques et rĂ©organisation cellulaire

    No full text
    The dimorphic fungi Candida albicans is a major human pathogen that causes life-threatening infections for immunocompromised patients. I have investigated C. albicans invasive filamentous growth, in collaboration with physicists, in particular the mechanical forces during this process, and quantitated the effects of these forces on cell morphology. Furthermore, I have examined the function of a filament tip cluster of vesicles, known as a Spitzenkörper, in the regulation of growth and cell morphology. Physical forces generated by C. albicans filamentous growth are likely to be critical for host tissue penetration, as well as escape from host immune cells. We have used the polymer polydimethylsiloxane (PDMS) to generate microchambers with different stiffness, similar to that of host cells and tissues. I have examined C. albicans filamentous growth in these confined chambers, in order to determine the biophysical properties of growth and substrate invasion. Using time lapse microscopy, I showed that the percentage of invasive hyphae decreased with an increase in PDMS stiffness, and determined a stiffness threshold, in which hyphae are unable to invade - likely the growth-stalling force. During invasive growth, there was a striking reduction in filament extension rate, compared to surface growth, which was dependent on PDMS stiffness. Furthermore, during this process, I observed a cell morphology change, i.e. a significant increase in cell diameter and a concomitant decrease in cell compartment length, resulting in cell volumes that were largely indistinguishable from that of surface growing cells. This morphology change was associated with a striking increase in the level of active Cdc42, the master regulator of polarity, at the hyphal tip and a concomitant depolarization of active Rho1, the glucan-synthase regulator, during invasive growth. These results indicate that changes in cell morphology during invasive growth are not due to depolarization or destabilization of active Cdc42. Rather, additional analyses suggest that mechanical forces, i.e. compression, are largely responsible for these morphological changes. The Spitzenkörper, which is a cluster of vesicles located at the filament apex adjacent to the plasma membrane, has been observed in a range of filamentous fungi. In C. albicans, electron microscopy studies have revealed that the Spitzenkörper is comprised of a uniform population of vesicles, however little was known regarding the function of this structure during filamentous growth. I have shown that the C. albicans Spitzenkörper is composed entirely of secretory vesicles. I have investigated the function of the Spitzenkörper using mutants and synthetic physical interaction approaches. Perturbation of the Spitzenkörper resulted in altered filament morphology and growth rate, strikingly an increase in filament diameter and concomitant increased growth rate was observed. Furthermore, deletion of a Spitzenkörper component dramatically reduced invasive growth. Together these results indicate that the Spitzenkörper regulates the region of new plasma membrane insertion, i.e. the ability to focus growth, and suggest that an increase in the flux of secretory vesicles compensates for less focused membrane addition. In summary, my studies reveal that mechanical forces affect C. albicans morphology and substrate invasive ability, and that the Spitzenkörper is the central link between filament morphology and growth rate, as well as substrate invasionCandida albicans est un champignon pathogĂšne de l’Homme qui provoque des infections potentiellement mortelles chez les patients immunodĂ©primĂ©s. J'ai Ă©tudiĂ© la croissance filamenteuse invasive de C. albicans, en collaboration avec des physiciens, - en particulier les forces mĂ©caniques lors de ce processus -, et quantifiĂ© les effets de ces forces sur la morphologie cellulaire. En outre, j'ai examinĂ© la fonction d'un cluster de vĂ©sicules Ă  l’apex du filament, appelĂ© Spitzenkörper, dans la rĂ©gulation de la croissance et de la morphologie cellulaire. Les forces physiques gĂ©nĂ©rĂ©es par la croissance filamenteuse de C. albicans sont critiques pour pĂ©nĂ©trer les tissus de l'hĂŽte et pour Ă©chapper aux cellules immunitaires. Nous avons utilisĂ© le polymĂšre polydimĂ©thylsiloxane (PDMS) pour gĂ©nĂ©rer des micro-chambres de rigiditĂ© diffĂ©rente, similaire Ă  celle des tissus de l’hĂŽte. J'ai examinĂ© la croissance filamenteuse de C. albicans dans ces chambres confinĂ©es, afin de dĂ©terminer les propriĂ©tĂ©s biophysiques de la croissance invasive. En utilisant la microscopie en temps rĂ©el, j'ai montrĂ© que le pourcentage de filaments invasifs diminuait avec une augmentation de la rigiditĂ© du PDMS, et dĂ©terminĂ© un seuil de rigiditĂ© pour lequel les filaments sont incapables d'envahir - probablement la « growth-stalling force ». Pendant la croissance invasive, la vitesse d'extension du filament est rĂ©duite, par rapport Ă  une croissance en surface non invasive, en fonction de la rigiditĂ© du PDMS. De plus, au cours de ce processus, j'ai observĂ© un changement de morphologie cellulaire, avec une augmentation significative du diamĂštre et une diminution concomitante de la longueur du compartiment cellulaire, rĂ©sultant en un volume similaire Ă  celui des cellules en croissance non invasive. Ce changement de morphologie est associĂ© Ă  une augmentation dramatique du taux de Cdc42 activĂ©, rĂ©gulateur clĂ© de la polaritĂ©, Ă  l'apex du filament et Ă  une dĂ©polarisation de Rho1 activĂ©, rĂ©gulateur de la glucan-synthase. Ces rĂ©sultats indiquent que les changements de morphologie cellulaire pendant la croissance invasive ne sont pas dus Ă  la dĂ©polarisation ou Ă  la dĂ©stabilisation de Cdc42 activĂ©. Au contraire, des analyses complĂ©mentaires suggĂšrent que des forces mĂ©caniques, en particulier la compression, sont largement responsables de ces changements morphologiques.Le Spitzenkörper, cluster de vĂ©sicules situĂ© Ă  l’apex du filament, est observĂ© chez une variĂ©tĂ© de champignons filamenteux. Chez C. albicans, des Ă©tudes de microscopie Ă©lectronique ont rĂ©vĂ©lĂ© que le Spitzenkörper est composĂ© d'une population uniforme de vĂ©sicules, mais la fonction de cette structure pendant la croissance filamenteuse est peu connue. J'ai montrĂ© que ce Spitzenkörper est entiĂšrement composĂ© de vĂ©sicules de sĂ©crĂ©tion et Ă©tudiĂ© sa fonction en utilisant des mutants et des approches d'interactions forcĂ©es. Perturber cette structure entraĂźne une modification de la morphologie du filament et de la vitesse de croissance; l’augmentation du diamĂštre du filament est associĂ©e Ă  une augmentation concomitante de la vitesse de croissance. En outre, la dĂ©lĂ©tion d'un des composants du Spitzenkörper rĂ©duit considĂ©rablement la croissance invasive. Dans l’ensemble, ces rĂ©sultats indiquent que cette structure rĂ©gule la rĂ©gion d'insertion de nouveau matĂ©riel membranaire, donc focalise la croissance, et suggĂšrent qu'une augmentation du flux de vĂ©sicules de sĂ©crĂ©tion compense pour une moindre focalisation de l’ajout de matĂ©riel membranaire. Dans l’ensemble, mes Ă©tudes rĂ©vĂšlent que les forces mĂ©caniques affectent la morphologie de C. albicans et sa capacitĂ© d‘invasion, et que le Spitzenkörper est le lien central entre morphologie du filament d’une part et vitesse de croissance et invasion filamenteuse, d’autre part

    Irish patrol /

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-ps/1972/thumbnail.jp

    Roll call march /

    No full text

    Mascot lancers /

    No full text

    Overture militair /

    No full text
    • 

    corecore