22 research outputs found

    Changes in IgA-targeted microbiota following fecal transplantation for recurrent Clostridioides difficile infection

    Get PDF
    Secretory immunoglobulin A (IgA) interacts with intestinal microbiota and promotes mucosal homeostasis. IgA-bacteria interactions are altered during inflammatory diseases, but how these interactions are shaped by bacterial, host, and environmental factors remains unclear. In this study, we utilized IgA-SEQ to profile IgA-bound fecal bacteria in 48 recurrent Clostridioides difficile patients before and after successful fecal microbiota transplantation (FMT) to gain further insight. Prior to FMT, Escherichia coli was the most highly IgA-targeted taxon; following restoration of the microbiota by FMT, highly IgA-targeted taxa included multiple Firmicutes species. Post-FMT IgA-targeting was unaffected by the route of FMT delivery (colonoscopy versus capsule), suggesting that both methods lead to the establishment of healthy immune–bacterial interactions in the gut. Interestingly, IgA-targeting in FMT recipients closely resembled the IgA-targeting patterns of the donors, and fecal donor identity was significantly associated with IgA-targeting of the recipient microbiota. These data support the concept that intrinsic bacterial properties drive IgA recognition across genetically distinct human hosts. Together, this study suggests that IgA-bacterial interactions are reestablished in human FMT recipients to resemble that of the healthy fecal donor

    A Multi-Factorial Observational Study on Sequential Fecal Microbiota Transplant in Patients with Medically Refractory Clostridioides difficile Infection

    Get PDF
    Fecal microbiota transplantation (FMT) is highly effective in recurrent Clostridioides difficile infection (CDI); increasing evidence supports FMT in severe or fulminant Clostridioides difficile infection (SFCDI). However, the multifactorial mechanisms that underpin the efficacy of FMT are not fully understood. Systems biology approaches using high-throughput technologies may help with mechanistic dissection of host-microbial interactions. Here, we have undertaken a deep phenomics study on four adults receiving sequential FMT for SFCDI, in which we performed a longitudinal, integrative analysis of multiple host factors and intestinal microbiome changes. Stool samples were profiled for changes in gut microbiota and metabolites and blood samples for alterations in targeted epigenomic, metabonomic, glycomic, immune proteomic, immunophenotyping, immune functional assays, and T-cell receptor (TCR) repertoires, respectively. We characterised temporal trajectories in gut microbial and host immunometabolic data sets in three responders and one non-responder to sequential FMT. A total of 562 features were used for analysis, of which 78 features were identified, which differed between the responders and the non-responder. The observed dynamic phenotypic changes may potentially suggest immunosenescent signals in the non-responder and may help to underpin the mechanisms accompanying successful FMT, although our study is limited by a small sample size and significant heterogeneity in patient baseline characteristics. Our multi-omics integrative longitudinal analytical approach extends the knowledge regarding mechanisms of efficacy of FMT and highlights preliminary novel signatures, which should be validated in larger studies

    Glycosylation of immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases

    Get PDF
    Effector functions of immunoglobulin G (IgG) are regulated by the composition of a glycan moiety, thus affecting activity of the immune system. Aberrant glycosylation of IgG has been observed in many diseases, but little is understood about the underlying mechanisms. We performed a genome-wide association study of IgG N-glycosylation (N = 8090) and, using a data-driven network approach, suggested how associated loci form a functional network. We confirmed in vitro that knockdown of IKZF1 decreases the expression of fucosyltransferase FUT8, resulting in increased levels of fucosylated glycans, and suggest that RUNX1 and RUNX3, together with SMARCB1, regulate expression of glycosyltransferase MGAT3. We also show that variants affecting the expression of genes involved in the regulation of glycoenzymes colocalize with variants affecting risk for inflammatory diseases. This study provides new evidence that variation in key transcription factors coupled with regulatory variation in glycogenes modifies IgG glycosylation and has influence on inflammatory diseases

    MIgGGly (mouse IgG glycosylation analysis) - a high-throughput method for studying Fc-linked IgG N-glycosylation in mice with nanoUPLC-ESI-MS

    Get PDF
    Immunoglobulin G (IgG) N-glycosylation is crucial for its effector functions. It is a complex trait, and large sample sets are needed to discover multiple genetic factors that underlie it. While in humans such high-throughput studies of IgG N-glycans became usual, only one has been carried out in mice. Here we describe and validate a method for the relative quantification of IgG Fc-linked N-glycans in a subclassspecific manner using nano-reverse phase liquid chromatography coupled with mass-spectrometry (nanoRP-LC-MS) applied to murine IgG. High-throughput data processing is ensured by the LaCyTools software. We have shown that IgG isolation procedure is the main source of technical variation in the current protocol. The major glycoforms were quantified reliably with coefficients of variation below 6% for all the analytes with relative abundances above 5%. We have applied our method to a sample set of 3 inbred strains: BALB/c, C57BL/6 and C3H and observed differences in subclass-specific and strainspecific N-glycosylation of IgG, suggesting a significant genetic component in the regulation of Fclinked IgG N-glycosylation

    NIST interlaboratory study on glycosylation analysis of monoclonal antibodies : comparison of results from diverse analytical methods

    Get PDF
    Glycosylation is a topic of intense current interest in the development of biopharmaceuticals since it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy‑six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submitted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation  analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide community-derived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type.. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods

    Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease

    Get PDF
    Epigenetic alterations may provide important insights into gene-environment interaction in inflammatory bowel disease (IBD). Here we observe epigenome-wide DNA methylation differences in 240 newly-diagnosed IBD cases and 190 controls. These include 439 differentially methylated positions (DMPs) and 5 differentially methylated regions (DMRs), which we study in detail using whole genome bisulphite sequencing. We replicate the top DMP (RPS6KA2) and DMRs (VMP1, ITGB2 and TXK) in an independent cohort. Using paired genetic and epigenetic data, we delineate methylation quantitative trait loci; VMP1/microRNA-21 methylation associates with two polymorphisms in linkage disequilibrium with a known IBD susceptibility variant. Separated cell data shows that IBD-associated hypermethylation within the TXK promoter region negatively correlates with gene expression in whole-blood and CD8+ T cells, but not other cell types. Thus, site-specific DNA methylation changes in IBD relate to underlying genotype and associate with cell-specific alteration in gene expression

    Changes in IgA-targeted microbiota following fecal transplantation for recurrent Clostridioides difficile infection

    No full text
    Secretory immunoglobulin A (IgA) interacts with intestinal microbiota and promotes mucosal homeostasis. IgA-bacteria interactions are altered during inflammatory diseases, but how these interactions are shaped by bacterial, host, and environmental factors remains unclear. In this study, we utilized IgA-SEQ to profile IgA-bound fecal bacteria in 48 recurrent Clostridioides difficile patients before and after successful fecal microbiota transplantation (FMT) to gain further insight. Prior to FMT, Escherichia coli was the most highly IgA-targeted taxon; following restoration of the microbiota by FMT, highly IgA-targeted taxa included multiple Firmicutes species. Post-FMT IgA-targeting was unaffected by the route of FMT delivery (colonoscopy versus capsule), suggesting that both methods lead to the establishment of healthy immune–bacterial interactions in the gut. Interestingly, IgA-targeting in FMT recipients closely resembled the IgA-targeting patterns of the donors, and fecal donor identity was significantly associated with IgA-targeting of the recipient microbiota. These data support the concept that intrinsic bacterial properties drive IgA recognition across genetically distinct human hosts. Together, this study suggests that IgA-bacterial interactions are reestablished in human FMT recipients to resemble that of the healthy fecal donor

    Glycosylation of immunoglobulin g: role of genetic and epigenetic influences

    Get PDF
    Objective To determine the extent to which genetic and epigenetic factors contribute to variations in glycosylation of immunoglobulin G (IgG) in humans. Methods 76 N-glycan traits in circulating IgG were analyzed by UPLC in 220 monozygotic and 310 dizygotic twin pairs from TwinsUK. A classical twin study design was used to derive the additive genetic, common and unique environmental components defining the variance in these traits. Epigenome-wide association analysis was performed using the Illumina 27k chip. Results 51 of the 76 glycan traits studied have an additive genetic component (heritability, h2)≥ 0.5. In contrast, 12 glycan traits had a low genetic contribution (h2<0.35). We then tested for association between methylation levels and glycan levels (P<2 x10-6). Among glycan traits with low heritability probe cg08392591 maps to a CpG island 5’ from the ANKRD11 gene, a p53 activator on chromosome 16. Probe cg26991199 maps to the SRSF10 gene involved in regulation of RNA splicing and particularly in regulation of splicing of mRNA precursors upon heat shock. Among those with high heritability we found cg13782134 (mapping to the NRN1L gene) and cg16029957 mapping near the QPCT gene to be array-wide significant. The proportion of array-wide epigenetic associations was significantly larger (P<0.005) among glycans with low heritability (42%) than in those with high heritability (6.2%). Conclusions Glycome analyses might provide a useful integration of genetic and non-genetic factors to further our understanding of the role of glycosylation in both normal physiology and disease
    corecore