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Integrative epigenome-wide analysis demonstrates
that DNA methylation may mediate genetic risk
in inflammatory bowel disease
N.T. Ventham1, N.A. Kennedy1, A.T. Adams1, R. Kalla1, S. Heath2,3, K.R. O’Leary1, H. Drummond1, IBD BIOM

consortiumw, IBD CHARACTER consortiumw, D.C. Wilson4, I.G. Gut2,3, E.R. Nimmo1, J. Satsangi1

Epigenetic alterations may provide important insights into gene-environment interaction in

inflammatory bowel disease (IBD). Here we observe epigenome-wide DNA methylation

differences in 240 newly-diagnosed IBD cases and 190 controls. These include 439

differentially methylated positions (DMPs) and 5 differentially methylated regions (DMRs),

which we study in detail using whole genome bisulphite sequencing. We replicate the top

DMP (RPS6KA2) and DMRs (VMP1, ITGB2 and TXK) in an independent cohort. Using

paired genetic and epigenetic data, we delineate methylation quantitative trait loci;

VMP1/microRNA-21 methylation associates with two polymorphisms in linkage disequilibrium

with a known IBD susceptibility variant. Separated cell data shows that IBD-associated

hypermethylation within the TXK promoter region negatively correlates with gene expression

in whole-blood and CD8þ T cells, but not other cell types. Thus, site-specific DNA

methylation changes in IBD relate to underlying genotype and associate with cell-specific

alteration in gene expression.
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I
nflammatory bowel disease (IBD) has a strong genetic
contribution; a trans-ancestry meta-analysis of genome-wide
associated studies (GWAS) has demonstrated 200 loci

associated with IBD1. Despite this tremendous progress in
delineating the genetic architecture of IBD, genetics explains
only a small proportion of disease heritability (13.1% Crohn’s
disease (CD) and 8.2% ulcerative colitis (UC) of disease
variance)1. Several environmental factors are known to
influence the development and course of disease; particularly
smoking, diet and the gut microbiota2. This has led some
investigators to investigate epigenetics as a potential interface
between genetics, environmental modifiers and disease3.
Epigenome-wide association studies (EWAS) have provided
insights into other complex diseases such as rheumatoid
arthritis4, type 2 diabetes mellitus5 and obesity6.

DNA methylation EWAS aim to determine the distribution of
methyl groups at thousands of specific positions across the
genome (CpG sites, cytosine-guanine dinucleotide) with the aim
of identifying arrangements that are more common to certain
disease traits compared to controls7. The biological significance
of DNA methylation is the association of DNA hypo- or
hyper-methylation occurring within regulatory regions of genes
(for example, promoters or transcription start sites) and gene
repression8. Epigenetic studies have important confounding
factors, most significantly, the cell-specific nature of epigenetic
signatures9.

In the context of IBD several preliminary studies have
used the Illumina 27k platform10–12 and subsequently the
HumanMethylation450 platform to assess genome-wide DNA
methylation patterns in blood and mucosal biopsy material in
IBD13–15. In our own study in treatment-naive children with CD,
highly significant differences in DNA methylation were noted to
occur in genes implicated in disease pathogenesis16. The findings
were replicable in a modest number of samples and a two
DNA methylation probe biomarker was found to accurately
discriminate IBD cases and controls, indicating a strong
translational potential16.

In the present study, we use a comprehensive integrative
approach to study multilevel DNA methylation, genomic and
gene expression data and to relate changes seen in whole blood
to the methylation profile in separated cells. In the primary
analysis, we use the Illumina 450 K platform to identify
differentially methylated positions (DMPs) and regions (DMRs)

in whole-blood DNA samples from 240 newly diagnosed IBD
cases (121 CD and 119 UC) and 191 controls. Technical
validation and detailed characterization of DMRs is performed
in a small cohort of 6 cases (3 CD and 3 UC) and 3 controls using
whole-genome bisulphite sequencing. Independent validation of
methylation results is performed using bisulphite pyrosequencing
in a further cohort of 240 patients with established IBD and 98
controls. Differentially methylated sites discovered in whole blood
are investigated in immunomagnetically separated leucocytes
(CD4þ and CD8þ lymphocytes, CD14þ monocytes) in a subset
of the main cohort (n¼ 60). All patients and controls profiled
using the Illumina 450K platform (n¼ 431) are genotyped using
the Illumina CoreExome-24 array that includes 547,644 genetic
variants. In a subset of patients with separated cell data (n¼ 68),
we perform gene expression analysis using the Illumina HT12
microarray.

Results
IBD-associated site-specific differences in DNA methylation.
An epigenome-wide association comparison was made between
IBD cases (both CD and UC) and controls (symptomatic
and healthy controls, Supplementary Table 1). Linear models
including age, sex and estimated cell proportions17 as covariates
were used to estimate DMPs, with Holm adjustment18 used to
stringently correct for multiple testing. The estimated cell
proportions derived from the Houseman cell mixture
deconvolution are presented in Supplementary Fig. 1. There
were 439 DMPs in IBD cases compared with controls achieving
corrected Po0.05 (Table 1, Fig. 1a,b). Gene ontology (GO)
analysis revealed 54 significantly enriched GO terms, a large
proportion of which relate to immune function (Supplementary
Table 2). There were 412 DMPs when comparing CD to controls
(Supplementary Table 3) and 203 when comparing UC to
controls (Supplementary Table 4). As has previously been
reported15, no significant differentially methylated sites were
detected in a comparison of CD and UC following correction for
multiple testing (Supplementary Table 5). There was a significant
overlap between DMPs seen in IBD, CD and UC compared with
controls (Supplementary Fig. 2). This parallels the latest genomic
data where susceptibility loci initially thought to be associated
with CD or UC are now known to be shared between both
diseases19. There were no DMPs when comparing symptomatic

Table 1 | Top table of differentially methylated positions (DMPs) between inflammatory bowel disease (IBD) cases and controls
in whole blood.

Illumina 450K probe ID Chr Gene symbol Feature Relation to UCSC CpG island Db P value Holm adj. P value

cg17501210 chr6 RPS6KA2 Body �0.08 2.71E� 22 1.22E� 16
cg18608055 chr19 SBNO2 Body �0.07 2.02E� 20 4.53E� 15
cg16936953 chr17 VMP1 Body �0.09 1.33E� 19 1.99E� 14
cg09349128 chr22 NA IGR N_Shore �0.04 3.11E� 19 3.48E� 14
cg25114611 chr6 NA TSS1500 S_Shore �0.04 1.10E� 18 8.79E� 14
cg12170787 chr19 SBNO2 Body �0.04 1.18E� 18 8.79E� 14
cg12992827 chr3 NA IGR �0.06 6.26E� 18 4.01E� 13
cg19821297 chr19 NA IGR S_Shore �0.06 3.66E� 17 1.98E� 12
cg12054453 chr17 VMP1 Body �0.07 3.98E� 17 1.98E� 12
cg01059398 chr3 TNFSF10 Body �0.05 1.59E� 16 7.13E� 12
cg26470501 chr19 BCL3 Body S_Shore �0.03 5.79E� 16 2.29E� 11
cg07398517 chr3 NA IGR �0.04 6.14E� 16 2.29E� 11
cg26804423 chr7 ICA1 Body 0.04 6.84E� 16 2.36E� 11
cg18942579 chr17 VMP1 Body �0.05 1.17E� 15 3.74E� 11

Adj., adjusted; Chr, chromosome; IGR, intergenic region, TSS1500, within 1,500 bp of a transcription start site.
Db, difference in beta values (ratio of methylated and total probe intensity (0 to 1) between IBD cases and controls, positive value indicated increased methylation in cases compared to controls, negative
values indicated hypomethylation in IBD cases versus controls. NA denotes methylation probes with no annotated gene symbol. P values are derived from linear models including age, sex and cell
proportions as covariates.
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controls and healthy volunteers (Supplementary Table 6),
allowing grouping of symptomatic and healthy controls into a
single large cohort.

Differentially methylated regions (DMRs), the most compelling
method of analysing DNA methylation data, were defined as Z3
contiguous probes within a 2 kb distance with unidirectional
methylation change and attaining Holm-adjusted Po0.05 on
DMP linear model analysis. Five DMRs were identified in IBD
cases versus controls and are listed in Table 2. There were four
CD-associated DMRs (VMP1, ITGB2, WDR8 and CDC42BPB)
and two UC-associated DMRs (VMP1 and WDR8) compared
with controls. These DMRs have been studied in detail using
whole genome bisulphite sequencing (Fig. 2) and are compelling

biological targets for further investigation (Supplementary
Table 7).

Environmental modifiers of DNA methylation. The most
significant DMP and DMRs were investigated for a possible
association with inflammation. There was a strong correlation
in both cases and controls between the top DMP and the
inflammatory marker C-reactive protein (CRP and RPS6KA2,
Spearman’s Rho � 0.53, P¼ 1.8� 10� 13, Supplementary
Fig. 3A), albumin (Pearson’s correlation¼ 0.94, Po2.2� 10� 16,
Supplementary Fig. 3B) and haemoglobin (Pearson’s
correlation¼ 0.55, P¼ 6.7� 10� 7, Supplementary Fig. 3C). The
association between CRP and RPS6KA2 remained consistent
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Figure 1 | Differentially methylated positions (DMP) analysis in Inflammatory bowel disease (IBD) cases and controls in whole blood. (a) Manhattan

plot of top differentially methylated positions (DMPs) in Inflammatory bowel disease (IBD) versus control. (b) Volcano plot of top DMPs and position of

methylation probes in relation to the gene (IGR, intergenic region; TSS, transcription start site; UTR, untranslated region).
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when outliers were removed (Supplementary Fig. 4). Moreover,
hypomethylation of RPS6KA2 was associated with a more severe
maximum Montreal disease behaviour in CD (Kruskall–Wallis,
P¼ 0.047, Supplementary Fig. 3E) and more extensive disease in
UC (Kruskall–Wallis, P¼ 7.9� 10� 5, Supplementary Fig. 3F).
A similar effect was seen with the top DMR (VMP1).

The potential impact of immunomodulatory therapy on the
epigenetic profile has been studied in a subset of patients with
data on treatment status at the time of blood sampling (139 IBD
cases (64 treatment naive), 191 controls). Details on the specific
therapies received are listed in Supplementary Table 1. The
treatment status did not alter DNA methylation at key DMRs

Table 2 | List of differentially methylated regions (DMRs) between inflammatory bowel disease (IBD) cases and controls in
whole blood.

Gene Feature Chr Db Min Holm adj. P value DMR size Probe counts Disease

VMP1 Body 17 �0.09 5.96E� 14 1150 4 IBD, CD, UC
WDR8 Body 1 0.03 9.76E�08 1943 3 IBD, CD, UC
NA IGR 1 0.04 1.83E�07 1997 3 IBD
ITGB2 50-UTR 21 0.04 3.28E�05 623 3 IBD, CD
TXK 50-UTR 4 0.02 0.00014 538 3 IBD

Adj., adjusted; CD, Crohn’s disease; Chr, chromosome; UC, ulcerative colitis.
Where a single P value or beta difference is presented, this represents the corresponding values from the most significant probe within the DMR on differential methylated position analysis (see Table 1).
Db, difference in beta values (ratio of methylated and total probe intensity (0 to 1) between IBD cases and controls, positive value indicated increased methylation in cases compared with controls,
negative values indicated hypomethylation in IBD cases versus controls. NA denotes methylation probes with no annotated gene symbol.
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inflammatory bowel disease cases (IBD, Red) and controls (Blue). (b) the same VMP1/microRNA-21 region mapped using whole genome bisulphite

sequencing (WGBS) data (Red line¼ IBD cases, Blue line¼Controls). (c) VMP1/microRNA-21 gene schematic diagram. Note only the first two exons of
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(Supplementary Fig. 5) and DMPs (Supplementary Fig. 6)
identified in preliminary analyses.

Post hoc analyses were performed to investigate the known
effect of age and smoking on DNA methylation. A linear model
was used to compare smokers and non-smokers amongst
all subjects with IBD status and cell proportions as covariates.
The methylation change (Db) in previously published
smoking- associated methylation probes demonstrated significant
correlation to the same probes in the present data set (Pearson’s
correlation¼ 0.93, P¼ 1.9� 10� 10 Supplementary Fig. 7A)20.
Sensitivity analyses including smoking (Supplementary Table 8)
and treatment status (Supplementary Table 9) as covariates linear
models for IBD versus control DMP analyses did not significantly
change the findings described above.

The ‘epigenetic age’ of the samples was calculated using
a modified version of the method described by Horvath
and correlated highly with the actual age (Pearson’s
correlation¼ 0.93, 95% confidence interval 0.91–0.94,
Supplementary Fig. 7B)21. There was no difference in the
calculated age acceleration between IBD cases and controls
(Supplementary Fig. 7C).

IBD-associated DNA methylation changes are highly replicable.
A major hurdle of EWAS has been a lack of replicable findings,
largely as a result of small sample sizes and confounding cellular
heterogeneity. Pyrosequencing of whole blood bisulphite
converted DNA of a subset of the main cohort (130 IBD cases
and 101 controls,Supplementary Table 10) provided technical
validation of the Illumina 450K array with strong correlation of
methylation differences across platforms (Supplementary
Table 11, Supplementary Fig. 8). While the Illumina 450K array
is a mature platform and technical replication is no longer
required, replication of findings in independent cohorts remains
critical. Selected 450K microarray findings were replicated using
pyrosequencing in an independent cohort (240 established IBD
cases, 98 controls, Supplementary Table 12) with the same
direction of methylation change for the most significant DMP
(RPS6KA2, IBD versus controls P¼ 1� 10� 9, Wilcoxon Rank
Sum,) and DMRs (VMP1 P¼ 1� 10� 6, IGTB2 P¼ 2� 10� 7

and TXK P¼ 4� 10� 10, Wilcoxon Rank Sum, Supplementary
Fig. 9A).

Our previously published early-onset CD whole-blood
methylation data provided an additional independent validation
cohort (36 paediatric CD, 36 controls)16. There was a highly
significant correlation between the difference in beta values
for the top 5,000 DMPs between CD cases and controls in the
present adult data set and the paediatric data set (Pearson’s
correlation¼ 0.77, 95% confidence interval 0.76–0.78, P value
o2.2� 1016, Supplementary Fig. 9B) and many of the most
significant DMPs were shared (Supplementary Table 13).

Cell-type specificity of whole tissue DNA methylation signals.
The cell-specific nature of DNA methylation signatures is
well-known. Circulating leukocytes were selected for DNA
methylation study as the most disease-relevant tissue in IBD.
IBD is an immune-mediated disease with well-recognised extra-
intestinal manifestations. Much of the current armamentarium of
IBD therapy targets the peripheral immune system. Principal
component analysis of the entire cohort of whole blood and
separated cell DNA methylation data demonstrates tight
clustering according to cell type of the sample (Fig. 3a).
The purity of isolated cell populations was assessed using
flow cytometry (CD14þ median¼ 92.4% (IQR 87–94.9),
CD4þ ¼ 97.3% (93.8–98.9), CD8þ ¼ 88.7 (80.5–93)) and
in silico using a previously described algorithm17 used to estimate

cell proportions based entirely on methylation data (CD14þ

median¼ 98.8% (IQR 93.7–100), CD4þ ¼ 98.8 (93.7–100),
CD8þ ¼ 87.2 (75.9–91.5)).

Comparisons between IBD cases and controls in specific cell
types are summarized in Fig. 3b. Following Holm correction for
multiple testing there were 6 DMPs for CD4þ cells, 11 DMPs for
CD14þ cells and no DMPs in CD8þ cells. When using a less
stringent threshold there were 763 DMPs for CD4þ cells,
899 DMPs for CD14þ cells and no DMPs in CD8þ cells.
All comparisons in the individual cell types are available in
Supplementary Tables 14–22.

Data derived from separated cells provides insight into cell type
of origin of methylation signals identified in whole blood.
RPS6KA2, the top DMP in whole blood is also hypomethylated in
CD14þ monocytes (Db � 11.7%, P¼ 5.8� 10� 8, false discovery
rate (FDR)-adjusted P¼ 0.009, linear model, Fig. 3c). The
difference in beta values between cases and controls was larger
in monocytes compared with whole blood, suggesting that
monocytes are likely to be responsible for the signal seen in
whole blood. The smaller effect sizes (Db) seen in whole blood
may represent a ‘dilution’ effect given that monocytes make
up a small fraction of all leukocytes. Cell-specific data also
demonstrates a DMR present in CD14þ monocytes in
HDAC4 (3 hypermethylated probes, 1,253 bases, minimum
P value¼ 4.1� 10� 7, minimum FDR-adjusted P¼ 0.006, linear
model, Fig. 3d). This is particularly interesting given HDAC4 is a
subclass of histone deacetylase enzymes, and may indicate
interaction between epigenetic mechanisms.

Differential methylation may be driven by genetic variants.
The IBD-associated DMPs appear to co-localize with known
IBD-associated GWAS loci. When compared with randomly
generated bins with similar probe density, there was a significant
enrichment of DMPs within defined distances of GWAS loci
(Bin size 25 kb P¼ 0.0012, 50 kb P¼ 2.27� 10� 6, 100 kb
P¼ 4.85� 10� 11, 250 kb P¼ 1.7� 10� 20, Supplementary
Fig. 10A). This effect appeared to be IBD-specific with no
enrichment for other related and non-related complex diseases
GWAS loci (Supplementary Fig. 10B).

Given that many of the hitherto described genetic variants
do not exist in sequence altering positions, DNA methylation may
be an important intermediary between genetics and disease. A
previous study attempted to determine DNA methylation as a
mediator of genetic risk in rheumatoid arthritis; a similar
methodology to which has been applied to the present IBD data
set4. The 439 IBD-associated DMPs were investigated for local
genetic association (cis methylation quantitative trait loci
(meQTL)). Using a threshold distance of 1 mb, minor allele
frequency 40.1 and age, sex and cell proportions as covariates, 326
meQTLs (74 independent DMPs, 292 independent single-
nucleotide polymorphisms (SNPs)) were identified. Two of five
aforementioned DMRs (VMP1 and ITGB2) have significant
genetic associations. Seven DNA methylation probes within the
VMP1/microRNA-21 locus associate with two SNPs (rs10853015,
rs8078424, both in Hardy–Weinberg equilibrium, Fig. 4b,c).
These two SNPs are in linkage disequilibrium with a known
IBD-susceptibility allele (rs1292053-rs8078424, distance¼
1,3072 bp, D0 ¼ 1, r2¼ 0.43 and rs1292053–s10853015,
distance¼ 185,198 bp, D0 ¼ 0.93, r2¼ 0.43, Fig. 4d)1,22, a finding
that offers the tantalizing possibility that the known IBD
susceptibility SNP mediates its effect on disease via DNA
methylation. While three of the four criteria of causal inference23

have been satisfied; we have not been able to demonstrate that
VMP1 methylation mediates between genotype and disease status
(genotype is not independent of phenotype following adjustment
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Figure 3 | Cell-type specificity of DNA methylation signals. (a) Principal component analysis demonstrating the first two components of the entire (i) DNA

methylation data set (ii) Gene expression data set. Both demonstrate tight clustering according to the cell type of origin of the sample. (b) Volcano plots for

IBD versus controls differential methylation position (DMP) analysis for separated cells (CD4þ , CD8þ T cells and CD14þ monocytes). (c,d) Boxplots show

the median, 25th and 75th percentiles, and 1.5 * interquartile range (error bars) of methylation (beta) values. Cell-specific DNA methylation profiles. (c) The

top differentially methylated position (RPS6KA2) was hypomethylated in whole blood and also monocytes. There was a larger difference between cases and

controls in the separated cells compared with whole tissue (blood). (d) demonstrates monocyte specific DNA methylation at the histone deacetylase

4 (HDAC4) locus. Beta differences and uncorrected P values derived from linear models (IBD cases versus controls, including age and sex as covariates).
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for methylation)4,5,24. This may reflect insufficient power to
identify genetic associations in IBD cases. Nonetheless this
demonstrates that IBD-specific differences in methylation may
be driven by underlying genetic variants, and provide a potential
mechanism by which genetic polymorphisms may contribute to
disease. The second DMR with a significant genetic association is
integrin subunit beta-2 (ITGB2). Three SNPs associated with
ITGB2 methylation are close, but not in linkage disequilibrium
with another previously described IBD susceptibility allele
(rs7282490).

Relating cell-specific DNA methylation and gene expression data.
The relationship between DNA methylation and gene expression

is complex and is likely to be cell specific. CpG island methylation
occurring within promoter regions and transcription start sites
(TSS) is known to be associated with reduced gene expression25.
Detailed characterization of the transcriptome in whole blood and
separated leukocytes using Illumina HT12 microarrays provided
multilevel matched genetic, methylation and expression data for a
subset of patients (Supplementary Table 23). IBD-associated
hypermethylation within the TXK gene between the 50

untranslated region and first exon region was associated with a
reduction in TXK gene expression seen in globin mRNA depleted
whole blood (log fold change¼ � 0.38, P¼ 7.2� 10� 5, linear
model) and CD8þ T cells (log fold change � 0.41, P¼ 0.03,
linear model), but not other cell types (Fig. 5). Like the DNA
methylation data, the difference in gene expression was larger in
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separated cells compared with whole tissue, indicating the
difference seen in the cell type of origin may become diluted
within the whole blood signal. There was statistically significant
negative correlation between TXK gene expression
(ILMN_1741143) and all three DNA methylation probes
included in the DMR in whole blood (cg02600394 Pearson’s
correlation¼ � 0.48 P¼ 0.001, cg20981615 corr¼ � 0.49
P¼ 0.0007, cg17984638 corr¼ � 0.44 P¼ 0.003) and CD8þ

cells (cg02600394 Pearson’s correlation¼ � 0.55 P¼ 0.0002,
cg20981615 corr¼ � 0.56 P¼ 0.0001, cg17984638 corr¼ � 0.7
P¼ 2� 10� 7) but not for other cell types in matched samples.
The level of expression of TXK appears to be similar in T-cells
(CD4þ and CD8þ ) but lower in monocytes. Using a method
that explores methylation within TSS and/or known regulatory
regions and gene expression within gene networks has
highlighted several functional epigenetic modules of biological
relevance that were significantly associated with IBD
(Supplementary Table 24)26.

DNA methylation biomarkers offers translational potential.
The paired methylation probe biomarkers described in Adams
et al.16 in paediatric CD and controls were prospectively validated in
the present adult data set using linear discriminant analysis. The

RPS6KA2/VMP1 probes (cg17501210/cg12054453) and RPS6KA2/
TNFSF10 probes (cg17501210/ cg01059398) were able to accurately
discriminate between disease and control in CD (area under receiver
operating characteristic curve (AUC)¼ 0.84/0.81 respectively); IBD
(AUC¼ 0.79/0.79) and UC (AUC¼ 0.73/0.71; Supplementary
Fig. 11A–C). Novel diagnostic DNA methylation biomarkers were
identified in the present cohort by L1 penalised logistic regression
(lasso)27. The cohort was randomly split into a learning set (2/3 of
the cohort¼ 287 individuals) and a testing set (n¼ 144). The
best-performing model that included 30 methylation probes was
able to discriminate between IBD cases and controls with a
high degree of accuracy (AUC¼ 0.898, sensitivity¼ 0.812,
specificity¼ 0.847, misclassification rate¼ 0.174, shrinkage
intensity was a normalization fraction of 0.06, Supplementary
Fig. 12). The number of methylation probes included in the model
could be reduced to 3 probes (RPS6KA2 cg175012010, cg09349128,
cg25114611); however, this led to a reduction in specificity for
IBD and a higher misclassification rate (AUC¼ 0.87,
sensitivity¼ 0.906, specificity¼ 0.542, misclassification rate¼ 0.243).
Similar discriminatory ability could be obtained for CD versus
control (AUC¼ 0.89, 42 probes) and UC versus control
(AUC¼ 0.81, 12 probes). Clinically it can be difficult to
distinguish CD from UC; a 19-probe panel was able to distinguish
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CD from UC with a good degree of accuracy (AUC¼ 0.719,
sensitivity¼ 1) using the same method.

The most pressing clinical need is the development of
biomarkers capable of predicting disease course. Lee et al.28

used CD8þ T-cell transciptomic data to identify subclasses
of IBD patients with more and less severe disease courses.
We applied a similar unsupervised consensus clustering
methodology29 to the top 5,000 most differentially methylated
450K probes (IBD versus control analysis, whole blood) in the
IBD cases only. Methylation data clustered into three stable
clusters (Supplementary Fig. 13, determined using clest30 and
cumulative distribution functions31). Univariate survival analysis
demonstrated that the three subclasses were associated with high-
, moderate- and low-risk of requiring surgery (resection or
colectomy, w2-test for difference between survival curves with 2
degrees of freedom P¼ 0.01), emergency hospital admission
(P¼ 0.0008) and immunomodulatory therapy (oral or IV
steroids, azathioprine, anti-tumour necrosis alpha monoclonal
therapy, ciclosporin, methotrexate, P¼ 0.02, Supplementary
Fig. 14A–D). Cox proportional hazards regression including
other clinical covariates (age, sex, CRP, albumin and
haemoglobin) demonstrated that the IBD subclasses were not
independently predictive of outcome (Supplementary Table 25).

Discussion
This study has demonstrated site-specific methylation changes in
IBD compared with controls that were strongly significant
following stringent correction for multiple testing. In lieu of a
consensus on an accepted significance threshold for EWAS, a
correction method has been used here as has traditionally been
applied to GWA data. Using this conservative threshold, 439
significant DMPs and 5 DMRs have been identified. Whereas
many early EWAS results have not been replicated, the highly
replicable nature of DMPs and DMRs in independent cohorts in
this study increases the confidence in the findings. A compre-
hensive approach was employed to study genome-wide DNA
methylation, using whole genome bisulphite sequencing, Illumina
450K arrays and pyrosequencing allied with genomic and
transcriptomic data in matched individuals allowing truly
integrative analysis.

The top IBD-associated DMR, VMP1 (vaculole-membrane
protein 1), was also one of the most significant DMPs. VMP1 was
also the principal finding in our previous paediatric study, and is
validated here in a significantly larger cohort. The majority of
methylation probes in the VMP1 area are found towards the
30-end of the VMP1, which coincides with the primary
transcription site for microRNA-21 (pre-miR21). This is
a promising avenue for further research given the pro-
inflammatory status of microRNA-21 and its previous
implication in colitis and IBD pathogenesis32,33. Another
notable IBD-associated DMR is ITGB2 (integrin subunit
beta 2), the gene of which has a role in leukocyte adhesion,
activation and trafficking34. This is particularly interesting given
the recent focus on strategies to therapeutically target leukocyte
adhesion, namely vedolizumab, which targets a different integrin
subunit (a4b7)35. Aberrant DNA hypermethylation at the ITGB2
locus has previous been demonstrated in IBD in mucosal14 and
peripheral blood leucocyte15 samples as well as in other
diseases36. The other DMRs are also of great interest: WDR8 or
WRAP73 (WD (trp-asp) repeat protein family, antisense to
Trp73) which is involved in several cellular and gene regulatory
processes37 and TXK is discussed in below.

Whilst DMRs have been considered as the hallmarks of
differential methylation, DMPs should also not be overlooked.
The top DMP was RPS6KA2, a ribosomal kinase in the serine/

threonine kinase family38 that regulates a diverse set of cellular
processes including cell growth, cell motility, proliferation and
cell cycle progression39. RPS6KA is involved in several stages of
translational control and is a mediator in the PI3K/Akt/mTor
pathway39. mTOR is involved in autophagy, which importantly is
dysregulated in CD. Given that IBD-associated aberrant
RPS6KA2 methylation occurs within the gene body at a region
with dense CpG content, and that no difference was seen in
RPS6KA2 gene expression, the functional relevance of this
finding may be difficult to delineate. RPS6KA2 is found within
an IBD-associated GWAS locus (rs1819333, P¼ 6.76� 10� 21,
odds ratio¼ 1.08)22, and it is possible that a genetic
polymorphism may be contributing to this strong finding.
RPS6KA2 methylation has previously been associated with
cigarette smoking20, while it appears that smoking status does
not account for the disease-associated methylation difference in
this data set, is interesting given that smoking is a known
environmental modifier of IBD. The protein encoded by SBNO2,
Strawberry notch homologue 2, another DMP, is known to have
an anti-inflammatory effect by acting as part of the interleukin-10
downstream pathway40. Again, SBNO2 is found within an
IBD-associated GWAS locus41. Other highly interesting
DMPs implicated in well-known IBD pathogenic pathways
include interleukin-23 subunit A (IL23A), another IBD GWAS-
susceptibility locus, and tumour necrosis factor superfamily
member 10 (TNFSF10/TRAIL).

The impact of cellular heterogeneity on DNA methylation data
is a commonly cited limitation of EWAS studies conducted using
whole tissues42. Statistical algorithms that can provide estimated
cell proportions and allow adjustment for cellular heterogeneity
are now widely performed throughout the EWAS literature17.
There are comparatively fewer epigenetic studies with separated
cell data, particularly disease-relevant cells and this is a significant
strength of the present study43. Detailed characterization of
matched genetic, DNA methylation and expression data in
separated leukocytes has highlighted several cell-specific findings.
For example, the top DMP in whole blood, RPS6KA2, was
differentially methylated in CD14þ monocytes but not CD4þ or
CD8þ lymphocytes, potentially providing insight into the cell
type of origin of methylation signals seen in whole tissue. These
results must be interpreted with some caution due to the different
proportions of cells in IBD compared with non-IBD. Cell
specificity may become even more relevant when analysing the
relationship between methylation and gene expression. A major
finding of this study is IBD-associated hypermethylation of the
TXK TSS occurring specifically within CD8þ cells, with an
appropriate negative correlation with decreased gene expression
in CD8þ T cells of the same individual. Expression of TXK,
a member of the Tec family of non-receptor tyrosine kinases,
in Th1 T cells is obligatory for the production of interferon
gamma44. CD8þ T cells have an established role in IBD
pathogenesis28,45,46 with recent data suggesting that CD8þ T
cell exhaustion may be a critical prognostic factor in immune-
mediated diseases47.

While this observational study design does not allow functional
interrogation of the origin of the DNA methylation profile seen
here in IBD, it is interesting to speculate on the origin of such
signals. The strong correlation between clinical inflammatory
markers and the top DMPs and DMRs perhaps indicate that the
observed methylation changes are a consequence of inflamma-
tion. It is notable that these signals endure in the replication
cohort that consists of patients with established disease sampled
following treatment. A small study of mucosal DNA methylation
in children with UC suggests that the methylome reverted
back towards that of healthy controls following treatment14.
Contrary to this hypothesis is the strong association between
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germ-line variation and methylation of two of the five DMRs
(VMP1/microRNA-21 and ITGB2). This exciting novel finding
associates methylation in the VMP1/microRNA-21 region with
two nearby SNPs, which act as methylation quantitative trait loci
(meQTLs). These meQTLs (rs10853015, rs8078424) are in
linkage disequilibrium with a known IBD-susceptibility GWAS
locus (rs1292053). DNA methylation may be a mechanism by
which genetic variants outside of protein coding regions may
contribute to the disease phenotype. In rheumatoid arthritis, Liu
et al.4 used mediation analyses to demonstrate that methylation
was the causal mechanism by which genotype conferred disease
risk. Most associations occurred in the major histocompatibility
complex region, known to harbour many genetic variants with
complex and extended linkage disequilibrium structures48. In the
present study we were able to establish several of the principals
of causal inference but not independence of genotype and
phenotype following adjustment for methylation, a finding
reflected in the complex disease literature5. The strong
association between top ranking IBD-associated DMP/DMR
and nearby genetic variants nevertheless represents a major
finding and goes some way to explain the significant site-specific
methylation differences in IBD cases and controls.

DNA methylation data offer immediate translational potential
as biomarkers. The SEPT09 blood-based DNA methylation
biomarker has been used in diagnosis and screening for colorectal
cancer49. We have previously demonstrated two methylation
probes can accurately differentiate CD and controls and have
prospectively validated the same two probe markers using the
present data set16. Here we have used lasso27, an established
machine learning technique that can help avoid over-fitting in
large data sets where the number of variables vastly exceed the
number of samples. The final 30-probe model is easily scalable
into a high-throughput pyrosequencing panel. Such a
non-invasive peripheral blood biomarker could be used to
stratify patients to further intrusive investigations (e.g.,
colonoscopy). Existing clinically available biomarkers such as
faecal calprotectin50 already provide similar utility but are unable
to distinguish the two forms of IBD. A different 19-probe
methylation-based panel can discriminate CD and UC,
potentially facilitating clinical decision-making where the
medical and surgical management of the two diseases differ.
Currently no prognostic biomarkers can reliably differentiate
patients requiring early aggressive treatment from those who
would experience a quiescent disease course. There has been
some anticipation that emerging ‘-omic’ data may provide such a
biomarker28. We have identified a DNA methylation signature
that associates with high-, intermediate- and low-risk of specific
deleterious outcomes. Consensus clustering has recognized
limitations51 and it is noteworthy that the methylation
subclasses are not independently predictive of outcome and are
likely to be driven by underlying differences in cell count or other
clinical parameters.

The primary whole-blood analysis was well powered to detect
differential methylation between IBD cases and controls and key
findings were replicated in a similarly sized replication cohort
using an orthogonal technique. The allied separated cell DNA
methylation, gene expression and genetic data sets provided
complimentary data and allowed further investigation of key
findings from the primary analyses but were not sufficiently
powered to provide meaningful conclusions in their own right.
The cross sectional study design limits the ability to define cause
and effect, in particular, the contribution of genotype and
inflammation. The functional implications of methylation
changes identified here may be investigated using recently
developed CRIPSR technology52. Samples from patients with
different complex inflammatory diseases would help define the

specificity of described methylation changes to IBD. While the
impact of cellular heterogeneity on whole-tissue methylation is
well known, existing17 and new53 algorithms used to estimate cell
count are now widely used to adjust for differential cell
distribution. Whilst generally accepted, cell fraction predictions
are estimates and when included as independent covariables in
linear modelling may result in inflated P values and potentially
false-positive DMPs. We have taken the additional step of
performing cell sorting of target tissue to provide insights into cell
type of origin of whole-tissue signals. In this study, three cell
types have been isolated but it would also be informative to
generate data on specific T-cell subpopulations (for example,
T-reg cells, naive CD4þ cells), other common blood cell types
(for example , neutrophils) as well as gut mucosa.

This is the most detailed characterization of the circulating IBD
methylome to date. Highly statistically significant and replicable
DNA methylation differences have been demonstrated at sites
pertinent to disease pathogenesis. DNA methylation may be a
factor of underlying germ line variation and may represent a
mechanism by which genetic polymorphisms contribute to
disease variance. Cell sorting of disease-relevant immune cells
has highlighted subtle cell-specific relationships between DNA
methylation and gene expression. The immediate agenda for
epigenetic research in IBD includes further well powered EWAS
in diverse populations, delineating the methylome at the mucosal
level particularly in specific gut cell types, and prospective
diagnostic and prognostic biomarker studies to facilitate early
clinical translation.

Methods
Patient selection and ethics. To limit the potential effect of chronic inflammation
and powerful immunomodulatory drugs on the epigenetic profile, patients were
recruited as close to diagnosis as possible. The patients were recruited prospectively
as part of the IBD–BIOM inception cohort from gastroenterology and endoscopy
appointments.

Symptomatic controls were recruited from gastroenterology clinics during the
same period; following rigorous investigation these individuals were found not to
have IBD or any other organic bowel pathology. A further control group consisting
of healthy volunteers with no self-reported gastrointestinal symptoms were also
recruited.

The Tayside Committee on Medical Ethics B granted approval for this study
with all patients and controls giving written, informed consent (LREC 06/S1101/16,
LREC 2000/4/192).

Sample collection and immunomagnetic cell sorting. Blood samples were
taken in the following tubes: 9 ml Z Serum clot activated vacuette (Greiner,
Frickenhausen, Germany), 9 ml K3 EDTA vacuette (Greiner) and PAXgene blood
RNA tubes (BD, NJ, USA). Between of 18–36 mls of EDTA buffered blood was
used for an initial Ficoll (Ficoll-Paque, GE healthcare, Bucks, UK) density gradient
centrifugation to obtain peripheral blood mononuclear cells. Cells labelled with
antibody-coated microbeads (human CD14þ , CD8þ and CD4þ microbeads,
20 ml per 1� 107 cells) were immunomagnetic separated using the autoMACs Pro
cell separator (Miltenyi, Germany). CD4þ separations were performed following
an initial CD14þ depletion step. Cell purity was estimated using florescent
antibody staining and flow cytometry (FACS Aria II, BD, Germany). Following
peripheral blood mononuclear cell depletion, erythrocytes were lysed on ice
(1,000 ml dH2O, 8.3 g of NH4Cl, 1.0 g of KHO3 and 1.8 ml of 5% EDTA) and
granulocytes were recovered by centrifugation.

Genome-wide methylation profiling. Peripheral blood leukocyte DNA was
bisulphite converted and analysed using the Illumina HumanMethylation450
platform (Illumina, San Diego, CA, USA)54. Cases, controls and different cell types
were randomly distributed across chips. Data were processed using the lumi55,
methylumi56 and minfi57 packages in R (R Foundation for Statistical Computing,
Vienna). Probes were filtered out if the detection P value of Z0.01 or if 45% of
probes failed. Probes containing SNPs with a minor allele frequency of Z0.01 in
the European population in the 1000 Genomes Project were also removed58.
Samples with 45% of probes failing and those failing a sex check (based on
X chromosome methylation level) were also removed. In methylumi, probes were
background adjusted, corrected from dye colour bias, and quantile normalized.
Intra-array and probe design variation was corrected for using beta-mixture
quantile dilatation (BMIQ)59. Inter-array batch effects were corrected for using
ComBat60. Cell proportions were estimated from methylation data using the
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Houseman algorithm17 as implemented in minfi. Differentially methylated position
analysis (DMP, single CpG probe) was performed using limma using the
aforementioned cell proportions together with age and sex as covariates61.
Statistical significance was set at Po0.05 following adjustment for multiple testing
using Holm correction18 for whole-blood data, and the Benjamini Hochberg FDR62

for separated cell data.
Differentially methylated regions (DMRs) were defined as three or more

contiguous probes within a 2 kb distance, each sharing the same direction of
methylation change, each achieving a Holm corrected Po0.05 in DMP analysis. A
previously described16 reimplementation of the Lasso function from the CHaMP
pipeline63 was used for this analysis (Please note that the Lasso function described
here is distinct from the lasso function described below in the biomarker discovery
section).

A power calculation was performed based on the data from our previous
paediatric study16. The median transformed standard deviation was calculated
across the most variable 1000 probes (median standard deviation¼ 0.02,
Supplementary Fig. 15A,B). Curves (Supplementary Fig. 15C) were plotted using
the pwr.t.test function for varying n, with an alpha value of genome wide
significance was set at P¼ 1� 10� 7 with the beta error along the y axis (ab line at
80%) and effect size (d) along the x axis. For an 80% power to detect an effect size
of a difference in means of one s.d. was 100 patients per group.

The proximity of differentially methylated probes to the 163 known IBD-
associated GWAS risk loci described in Jostins et al.22 within range thresholds of
25, 50, 100 and 250 kb was compared with 1,000 randomly selected bins of the
same size with matched probed density using Wilcoxon rank sum test. The same
methodology was utilized in our previous study16. As a control, the IBD-associated
DMPs were also tested for enrichment with GWAS data obtained from the GWAS
catalogue (http://www.genome.gov/gwastudies/) for seven other diseases;
rheumatoid arthritis, psoriasis, ankylosing spondylitis, TB, type I diabetes,
Alzheimer’s disease, IgG glycosylation, colorectal cancer and hair colour.

Whole genome bisulphite sequencing. Whole genome bisulphite sequencing was
performed on six IBD cases (3 CD, 3 UC) and three controls using a similar
method to that described elsewhere64. Whole blood genomic DNA (1–2 mg) was
spiked with l DNA (5 ng of l DNA/microgram of genomic DNA; Promega).
DNA was sonicated to create fragments of 50–500 bp in size, and fragments of
150–300 bp were size-selected using AMPure XP beads (Agencourt Bioscience).
DNA libraries were created using the Illumina TruSeq Sample Preparation kit
following Illuminas standard protocol: DNA fragments underwent end repair, an
adenine was added to the 30 end and Illumina TruSeq adaptors were ligated to each
end. Following adaptor ligation, DNA was twice bisulfite converted using the
EpiTexy Bisulfite kit (Qiagen), following the manufacturer’s protocol to obtain a
conversion rate 499%. PCR using PfuTurboCx Hot-Start DNA polymerase
(7 cycles, Stratagene) was performed to enrich samples for adaptor-ligated DNA.
The library was quality assessed using the Agilent 2100 Bioanalyzer, and the
concentration estimated using the library quantification PCR kit (Kapa
Biosystems). The Illumina HiSeq 2000 platform was used to perform paired-end
DNA sequencing (2� 100 bp).

A previously described pipeline for data processing to a final data set of called
CpG files was performed at Centro Nacional de Análisis Genómico64. Briefly, reads
were mapped using the GEM aligner (v1.242) against two versions of the human
GRCh37 reference genome (hg19, version 1—C replaced by T, version 2 G replaced
by A) with the original sequence being stored. Up to four mismatches per read with
respect to the reference were allowed. After read mapping, the original sequence for
each read was restored.

Estimation of cytosine levels was carried out on read pairs where both members
of the pair mapped to the same contig with consistent orientation and there was no
other such configuration at the same or a smaller edit distance from the reference.
After mapping, we restored the original read data in preparation for the inference
of genotype and methylation status. We estimated genotype and DNA methylation
status simultaneously taking into account the observed bases, base quality scores
and the strand origin of each read pair. For each genome position, we produced
estimates of the most likely genotype and the methylation proportion (for
genotypes containing a cytosine base on either strand). A Phred-scaled likelihood
ratio for the confidence in the genotype call was estimated for the called genotype
at each position. For each sample, CpG sites were selected where both bases were
called as homozygous CC followed by GG with a Phred score of at least 20,
corresponding to an estimated genotype error level of r1%. Suspected centromeric
or telomeric repetitive regions characterized by 4500� coverage depth were
excluded. A common set of called CpG sites was generated, and used in subsequent
analyses.

Pyrosequencing. There were 28 overlapping cases used in our previous study
(Adams et al.) that were used in addition to 310 independent samples. DNA was
bisulphite converted using the EZ-96 DNA Methylation kit (Zymo Research, Irving
CA) according to manufacturer instructions. Bisulphite converted DNA was
amplified for target sequences using PCR (PyroMark PCR kit, Qiagen, Dusseldorf,
Germany). Primers designed using the PyroMark Q24 Assay design software
(Version 2.0, Qiagen) and supplied by Sigma Aldrich (St Louis, MS, Supplementary
Table 26). Pyrosequencing was performed using the PyroMark Q24 platform and

initial data analysis was performed using PyroMark Q24 software (Version 2.0.6.20,
Qiagen). Samples were run in duplicate and results with a coefficient of variation of
Z10% were discarded.

Genotyping. Whole blood leukocyte DNA was extracted using the Nucleon BACC
3 DNA extraction kit (GE healthcare, Buckinghamshire, UK). Patients were
genotyped using the Illumina Human CoreExome BeadChip microarray (Illumina,
San Diego, CA, USA) and genotypes called by GenomeStudio were used.
A sex-check was performed using plink to identify and remove sex-mismatches.
MeQTLs and eQTLs were estimated using the matrixEQTL packages65.

Gene expression analysis. In addition to the subset of individuals with detailed
separate cell samples (n¼ 60), a further eight patients were included in gene
expression array analyses (total n¼ 68). Separated cell RNA was extracted using
the Allprep DNA/RNA miRNA universal kit (Qiagen). Whole blood RNA
was extracted from PAXgene tubes using the PAXgene blood miRNA kit
(PreAnalytix, Switzerland). The RNA was quantified and assessed for quality
using the Agilent BioAnalyzer with only samples with a RNA-integrity number of
47 being used for downstream analyses. Following sample concentration and
cleanup using the MinElute RNA cleanup kit (Qiagen), globin mRNA transcripts
were depleted using GlobinClear (Ambion, Life Technologies USA). RNA was
amplified and biotylated using the Illumina TotalPrep RNA Amplification Kit
(Ambion, Life Technology). The cRNA was quantified and assessed for quality
using the Agilent BioAnalyzer with the expected gel appearance of cRNA is a
‘smear’, with a distribution of cRNA size is expected between 250–5,500 nucleo-
tides, with most cRNA between 1,000 and 1,500 nt. Illumina HT12 human v4
expression microarrays were performed using a hybridization time of 18 h at 58 �C.
Data were analysed using the lumi55 and limma61 packages. Data were background
adjusted, variance stabilized and quantile normalized.

Biomarker validation and new biomarker discovery. Biomarkers identified in
Adams et al.16 were validated in this new adult data set using the same
methodology (linear discriminant analysis) and the previously published
methylation probe pairings. Two new methods were used for biomarker discovery.
The CMA package66 package aims to address the situation whereby the number of
variables vastly outnumbers the number of samples, common in microarray
studies. Fully Pre-processed beta values were used to discriminate between IBD
cases and controls. Using the CMA package, the available methods of variable
selection were assessed. On the basis of AUC, Lasso (least absolute shrinkage and
selection operator27,67) was the best performing variable classification method. The
LassoCMA function was used to perform the lasso algorithm for shrinkage and
selection of methylation probes to be used as putative biomarkers. The cohort was
arbitrarily split into a learning set (2/3 of the cohort¼ 287 individuals) and a
testing set of 144 individuals. The L1 shrinkage intensity was tuned to provide the
most accurate model, based on the AUC. This involved altering the shrinkage
intensity (that is, altering the number of CpG probes that algorithm could include
in the model). The random seed was fixed to provide reproducible results. For CD
versus UC the learning set was increased to include 3/4 of the cohort.

The second method employed unsupervized consensus (hierarchical)
clustering31 of median beta values of the top 5,000 DMPs identified in the primary
analysis (IBD versus controls, whole blood) using the ConsensusClusterPlus
package29,68. Kmeans clustering of the Pearson correlation coefficient was used as
the final clustering method, although similar results were obtained by using other
methods (kmeans clustering based on Spearman’s correlation, hierarchical
clustering, PAM clustering). The number of stable clusters was assessed using the
cumulative distribution function (CDF)31 and the clest method30. Logistic
regression was used to compare individuals classified according to clusters and
clinical outcomes including need for surgery (intestinal resection and/or
colectomy), emergency hospital admission, time until immunomodualtor
requirement (IV/oral steroid, thiopurine, ciclosporin, anti-TNFalpha monocolonal
antibody therapy, methotrexate) and escalation of therapy as previously defined28.

Data availability. Data have been deposited in GEO as a data series (Accession
code GSE87650). All other data are available from the authors on request.
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Daisy Jonkers25 & Marieke Pierik25

5Genos Glycoscience Research Laboratory, Hondlova 2/11, 10000 Zagreb, Croatia; 6Centre for Population Health Sciences, University of Edinburgh,
Edinburgh EH8 9AG, UK; 7F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center,
Los Angeles, 90048, USA; 8Department of Medical and Surgical Sciences, Division of Gastroenterology University Hospital Careggi, Largo Brambilla 3,
50141 Florence, Italy; 9Department of Biochemistry and Molecular Biology, University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1,
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30Örebro University, Department of Gastroenterology, Faculty of Medicine and Health, Långhuset, Fakultetsgatan 1, 702 81 Örebro, Sweden; 31University of
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