89 research outputs found
Exercise capacity and cardiac hemodynamic response in female ApoE/LDLR^{-/-} mice : a paradox of preserved V'O_{2max} and exercise capacity despite coronary atherosclerosis
We assessed exercise performance, coronary blood flow and cardiac reserve of female ApoE/LDLR-/- mice with advanced atherosclerosis compared with age-matched, wild-type C57BL6/J mice. Exercise capacity was assessed as whole body maximal oxygen consumption (V'O2max), maximum running velocity (vmax) and maximum distance (DISTmax) during treadmill exercise. Cardiac systolic and diastolic function in basal conditions and in response to dobutamine (mimicking exercise-induced cardiac stress) were assessed by Magnetic Resonance Imaging (MRI) in vivo. Function of coronary circulation was assessed in isolated perfused hearts. In female ApoE/LDLR-/- mice V'O2max, vmax and DISTmax were not impaired as compared with C57BL6/J mice. Cardiac function at rest and systolic and diastolic cardiac reserve were also preserved in female ApoE/LDLR-/- mice as evidenced by preserved fractional area change and similar fall in systolic and end diastolic area after dobutamine. Moreover, endothelium-dependent responses of coronary circulation induced by bradykinin (Bk) and acetylcholine (ACh) were preserved, while endothelium-independent responses induced by NO-donors were augmented in female ApoE/LDLR-/- mice. Basal COX-2-dependent production of 6-keto-PGF1α was increased. Concluding, we suggest that robust compensatory mechanisms in coronary circulation involving PGI2- and NO-pathways may efficiently counterbalance coronary atherosclerosis-induced impairment in V'O2max and exercise capacity
The Straw Tube Trackers of the PANDA Experiment
The PANDA experiment will be built at the FAIR facility at Darmstadt
(Germany) to perform accurate tests of the strong interaction through bar pp
and bar pA annihilation's studies. To track charged particles, two systems
consisting of a set of planar, closed-packed, self-supporting straw tube layers
are under construction. The PANDA straw tubes will have also unique
characteristics in term of material budget and performance. They consist of
very thin mylar-aluminized cathodes which are made self-supporting by means of
the operation gas-mixture over-pressure. This solution allows to reduce at
maximum the weight of the mechanical support frame and hence the detector
material budget. The PANDA straw tube central tracker will not only reconstruct
charged particle trajectories, but also will help in low momentum (< 1 GeV)
particle identification via dE/dx measurements. This is a quite new approach
that PANDA tracking group has first tested with detailed Monte Carlo
simulations, and then with experimental tests of detector prototypes. This
paper addresses the design issues of the PANDA straw tube trackers and the
performance obtained in prototype tests.Comment: 7 pages,16 figure
ECFA Detector R&D Panel, Review Report
Two special calorimeters are foreseen for the instrumentation of the very
forward region of an ILC or CLIC detector; a luminometer (LumiCal) designed to
measure the rate of low angle Bhabha scattering events with a precision better
than 10 at the ILC and 10 at CLIC, and a low polar-angle
calorimeter (BeamCal). The latter will be hit by a large amount of
beamstrahlung remnants. The intensity and the spatial shape of these
depositions will provide a fast luminosity estimate, as well as determination
of beam parameters. The sensors of this calorimeter must be radiation-hard.
Both devices will improve the e.m. hermeticity of the detector in the search
for new particles. Finely segmented and very compact electromagnetic
calorimeters will match these requirements. Due to the high occupancy, fast
front-end electronics will be needed. Monte Carlo studies were performed to
investigate the impact of beam-beam interactions and physics background
processes on the luminosity measurement, and of beamstrahlung on the
performance of BeamCal, as well as to optimise the design of both calorimeters.
Dedicated sensors, front-end and ADC ASICs have been designed for the ILC and
prototypes are available. Prototypes of sensor planes fully assembled with
readout electronics have been studied in electron beams.Comment: 61 pages, 51 figure
Performance of fully instrumented detector planes of the forward calorimeter of a Linear Collider detector
Detector-plane prototypes of the very forward calorimetry of a future
detector at an e+e- collider have been built and their performance was measured
in an electron beam. The detector plane comprises silicon or GaAs pad sensors,
dedicated front-end and ADC ASICs, and an FPGA for data concentration.
Measurements of the signal-to-noise ratio and the response as a function of the
position of the sensor are presented. A deconvolution method is successfully
applied, and a comparison of the measured shower shape as a function of the
absorber depth with a Monte-Carlo simulation is given.Comment: 25 pages, 32 figures, revised version following comments from
referee
A Statistically Rigorous Test for the Identification of Parent−Fragment Pairs in LC-MS Datasets
Untargeted global metabolic profiling by liquid chromato-graphy−mass spectrometry generates numerous signals that are due to unknown compounds and whose identification forms an important challenge. The analysis of metabolite fragmentation patterns, following collision-induced dissociation, provides a valuable tool for identification, but can be severely impeded by close chromatographic coelution of distinct metabolites. We propose a new algorithm for identifying related parent−fragment pairs and for distinguishing these from signals due to unrelated compounds. Unlike existing methods, our approach addresses the problem by means of a hypothesis test that is based on the distribution of the recorded ion counts, and thereby provides a statistically rigorous measure of the uncertainty involved in the classification problem. Because of technological constraints, the test is of primary use at low and intermediate ion counts, above which detector saturation causes substantial bias to the recorded ion count. The validity of the test is demonstrated through its application to pairs of coeluting isotopologues and to known parent−fragment pairs, which results in test statistics consistent with the null distribution. The performance of the test is compared with a commonly used Pearson correlation approach and found to be considerably better (e.g., false positive rate of 6.25%, compared with a value of 50% for the correlation for perfectly coeluting ions). Because the algorithm may be used for the analysis of high-mass compounds in addition to metabolic data, we expect it to facilitate the analysis of fragmentation patterns for a wide range of analytical problems
Infrastructure for Detector Research and Development towards the International Linear Collider
The EUDET-project was launched to create an infrastructure for developing and
testing new and advanced detector technologies to be used at a future linear
collider. The aim was to make possible experimentation and analysis of data for
institutes, which otherwise could not be realized due to lack of resources. The
infrastructure comprised an analysis and software network, and instrumentation
infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture
Feasibility studies of the time-like proton electromagnetic form factor measurements with PANDA at FAIR
The possibility of measuring the proton electromagnetic form factors in the
time-like region at FAIR with the \PANDA detector is discussed. Detailed
simulations on signal efficiency for the annihilation of into a
lepton pair as well as for the most important background channels have been
performed. It is shown that precision measurements of the differential cross
section of the reaction can be obtained in a wide
angular and kinematical range. The individual determination of the moduli of
the electric and magnetic proton form factors will be possible up to a value of
momentum transfer squared of (GeV/c). The total cross section will be measured up to (GeV/c).
The results obtained from simulated events are compared to the existing data.
Sensitivity to the two photons exchange mechanism is also investigated.Comment: 12 pages, 4 tables, 8 figures Revised, added details on simulations,
4 tables, 9 figure
Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR
Simulation results for future measurements of electromagnetic proton form
factors at \PANDA (FAIR) within the PandaRoot software framework are reported.
The statistical precision with which the proton form factors can be determined
is estimated. The signal channel is studied on the basis
of two different but consistent procedures. The suppression of the main
background channel, , is studied.
Furthermore, the background versus signal efficiency, statistical and
systematical uncertainties on the extracted proton form factors are evaluated
using two different procedures. The results are consistent with those of a
previous simulation study using an older, simplified framework. However, a
slightly better precision is achieved in the PandaRoot study in a large range
of momentum transfer, assuming the nominal beam conditions and detector
performance
Three-Nucleon Force Effects in Nucleon Induced Deuteron Breakup: Comparison to Data (II)
Selected Nd breakup data over a wide energy range are compared to solutions
of Faddeev equations based on modern high precision NN interactions alone and
adding current three-nucleon force models. Unfortunately currently available
data probe phase space regions for the final three nucleon momenta which are
rather insensitive to 3NF effects as predicted by current models. Overall there
is good to fair agreement between present day theory and experiment but also
some cases exist with striking discrepancies. Regions in the phase space are
suggested where large 3NF effects can be expected.Comment: 33 pages, 24 ps figures, 9 gif figure
Technical Design Report for the: PANDA Micro Vertex Detector
This document illustrates the technical layout and the expected performance
of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect
charged particles as close as possible to the interaction zone. Design criteria
and the optimisation process as well as the technical solutions chosen are
discussed and the results of this process are subjected to extensive Monte
Carlo physics studies. The route towards realisation of the detector is
outlined.Comment: 189 pages, 225 figures, 41 table
- …