280 research outputs found

    Estimations of free fatty acids (FFA) as a reliable proxy for larval performance in Mediterranean octocoral species

    Get PDF
    The survival, behavior, and competence period of lecithotrophic larvae depends not only on the energy allocation transferred by maternal colonies, but also on the amount of energy consumed to sustain embryonic, larval, and post-larval development. The objective of the present work is to understand the effect of energy consumption on the performance of lecithotrophic larvae. To this aim, we analysed free fatty acid (FFA) content and composition of the larvae of three Mediterranean octocorals (Corallium rubrum, Eunicella singularis, and Paramuricea clavata) as a proxy for energy consumption. Results showed that C. rubrum larvae consume more FFA than P. clavata, whereas the energy consumed by E. singularis larvae is high but highly variable. These results are in accordance with the larval behavior of these three species, since C. rubrum larvae are characterized by their high swimming activity frequency, P. clavata larvae are almost inactive, and the swimming activity frequency of E. singularis larvae is high, although variable. The differences in FFA composition of the larvae suggest contrasting energetic strategies that could explain the differences in survival and recruitment rates. In fact, high dispersal and recruitment capacities for E. singularis larvae can be inferred from the FFA composition, whereas the high spatial and temporal variability of recruitment observed in C. rubrum may be related to the non-selective transfer of fatty acid (FA) from maternal colonies. Finally, the high recovery rates after mass mortality events observed in P. clavata could be favored by the presence of a specific FA [22:6(n-3)] related to adaptation mechanisms under environmental stresses during the first developmental stages

    Benzene Selectivity in Competitive Arene Hydrogenation: Effects of Single-Site Catalyst···Acidic Oxide Surface Binding Geometry

    Get PDF
    Organozirconium complexes are chemisorbed on Brønsted acidic sulfated ZrO2 (ZrS), sulfated Al2O3 (AlS), and ZrO2-WO3 (ZrW). Under mild conditions (25 °C, 1 atm H2), the supported Cp*ZrMe3, Cp*ZrBz3, and Cp*ZrPh3 catalysts are very active for benzene hydrogenation with activities declining with decreasing acidity, ZrS ≫ AlS ≈ ZrW, arguing that more Brønsted acidic oxides (those having weaker corresponding conjugate bases) yield stronger surface organometallic electrophiles and for this reason have higher benzene hydrogenation activity. Benzene selective hydrogenation, a potential approach for carcinogenic benzene removal from gasoline, is probed using benzene/toluene mixtures, and selectivities for benzene hydrogenation vary with catalyst as ZrBz3(+)/ZrS(-), 83%Cp*ZrMe2(+)/ZrS(-), 80%Cp*ZrBz2(+)/ZrS(-), 67%Cp*ZrPh2(+)/ZrS(-), 57%. For Cp*ZrBz2(+)/ZrS(-), which displays the highest benzene hydrogenation activity with moderate selectivity in benzene/toluene mixtures. Other benzene/arene mixtures are examined, and benzene selectivities vary with arene as mesitylene, 99%,ethylbenzene, 86%toluene, 67%. Structural and computational studies by solid-state NMR spectroscopy, XAS, and periodic DFT methods applied to supported Cp*ZrMe3 and Cp*ZrBz3 indicate that larger Zr···surface distances are present in more sterically encumbered Cp*ZrBz2(+)/AlS(-) vs Cp*ZrMe2(+)/AlS(-). The combined XAS, solid state NMR, and DFT data argue that the bulky catalyst benzyl groups expand the "cationic" metal center-anionic sulfated oxide surface distances, and this separation/weakened ion-pairing enables the activation/insertion of more sterically encumbered arenes and influences hydrogenation rates and selectivity patterns

    Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs

    Get PDF
    14N ultra-wideline (UW), 1H{15N} indirectly-detected HETCOR (idHETCOR) and 15N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of 14N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. A case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW 14N SSNMR spectra of stationary samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR′R′′NH+ and RR′NH2+) or other (i.e., RNH2 and RNO2) nitrogen environments. Directly-excited 14N NMR spectra were acquired using the WURST-CPMG pulse sequence, which incorporates WURST (wideband, uniform rate, and smooth truncation) pulses and a CPMG (Carr-Purcell Meiboom-Gill) refocusing protocol. In certain cases, spectra were acquired using 1H → 14N broadband cross-polarization, via the BRAIN-CP (broadband adiabatic inversion – cross polarization) pulse sequence. These spectra provide 14N electric field gradient (EFG) tensor parameters and orientations that are particularly sensitive to variations in local structure and intermolecular hydrogen-bonding interactions. The 1H{15N} idHETCOR spectra, acquired under conditions of fast magic-angle spinning (MAS), used CP transfers to provide 1H–15N chemical shift correlations for all nitrogen environments, except for two sites in acebutolol and nicardipine. One of these two sites (RR′NH2+ in acebutolol) was successfully detected using the DNP-enhanced 15N{1H} CP/MAS measurement, and one (RNO2 in nicardipine) remained elusive due to the absence of nearby protons. This exploratory study suggests that this combination of techniques has great potential for the characterization of solid APIs and numerous other organic, biological, and inorganic systems

    Distribution and lability of land-derived organic matter in the surface sediments of the Rhône prodelta and the adjacent shelf (Mediterranean Sea, France): a multi proxy study

    Get PDF
    The Gulf of Lions is a river-dominated ocean margin that receives high loads of nutrients and particulate matter from the Rhône River but most particulate materials settle rapidly on the nearshore seafloor. One question is raised on the fate of these large quantities of organic carbon delivered by the river to the coastal marine environment. Surface sediments (0–0.5 cm) were collected in the Rhône prodelta and its adjacent shelf during a period of low river discharge (April 2007, 16 stations). The sources, distribution and lability of sedimentary organic matter were examined using bulk (organic carbon, total nitrogen, stable carbon isotope ratios, and grain size) and molecular-level (pigments, amino acids, fatty acids, and δ<sup>13</sup>C of individual fatty acids) analyses. Our results confirmed previous observations of a southwestward Rhodanian imprint in the nearshore sediments, with 97% of terrigenous inputs of organic matter near the river mouth. Isotopic values of bulk organic carbon, as well as fatty acid biomarkers and compound-specific δ<sup>13</sup>C signatures of most fatty acids clearly indicate that the Rhône inputs consist of a mixture of organic matter (OM) from different origins with a strong contribution from terrestrial sources (soil and plant debris), and a smaller input from freshwater microalgae, mostly diatoms. The influence of the Rhône River was prominent within the first ten kilometers, but may still be observed on the outer shelf (~21 km) as indicated by the occurrence of long chain fatty acids, which are derived from vascular plants, and their δ<sup>13</sup>C signatures. In the proximal prodelta, bacteria-specific fatty acids were abundant (1.65 mg g<sup>−1</sup> OC at the mouth site) and were relatively depleted in δ<sup>13</sup>C confirming that bacteria mostly utilize land-derived OM. In the shelf area, the inputs of marine OM and its predominant utilization by the bacteria was confirmed, but the coupling between the pelagic and the benthic compartments appeared limited at this period of the year. <br><br> Overall, degradation indexes based on amino acids (Dauwe's degradation index) and pigments (ratio of intact chlorophyll-<I>a</I> to the sum of chlorophyll-<I>a</I> + phaeopigment-<I>a</I>), as well as isotopic enrichment of source-specific fatty acids reveal an offshore gradient of OM decay reflecting the rapid deposition of the terrestrial material in the prodelta, the low mixing with OM deriving from marine sources and the efficient degradation of the OM. The OM delivered by the Rhône is relatively labile based on the intermediary value of Dauwe's degradation index, the high proportion of bio-available nitrogen and the occurrence of polyunsaturated fatty acids. Deltaic sediments off the Rhône River should thus be of sufficiently high nutritional quality to sustain dense macrofaunal communities

    Temporal variability of live (stained) benthic foraminiferal faunas in a river-dominated shelf – Faunal response to rapid changes of the river influence (Rhône prodelta, NW Mediterranean)

    Get PDF
    In the context of the French research project CHACCRA (Climate and Human-induced Alterations in Carbon Cycling at the River-seA connection), living (rose Bengal-stained) benthic foraminifera were investigated at two stations (24 and 67 m depth) in the Rhône prodelta (NW Mediterranean, Gulf of Lions). The aim of this study was to precise the response of benthic foraminiferal faunas to temporal changes of the Rhône River inputs (e.g. organic and terrigeneous material). Each site was sampled in April 2007, September 2007, May 2008 and December 2008, permitting to observe foraminiferal faunas of the 63–150 and >150 μm size fractions under a wide range of environmental conditions. Obvious variations in foraminiferal faunal composition were observed during the four investigated periods at the shallowest Station A located in the close vicinity of the Rhône River mouth. After major Rhône River flood events, different colonisation stages were observed with foraminiferal faunas responding with an opportunistic strategy few days to weeks after the creation of a peculiar sedimentary environment (<i>Leptohalysis scottii</i>, May 2008) or high organic matter supplies (<i>Ammonia tepida</i>, December 2008). Under more stable conditions, relatively diverse and equilibrated faunas grew in the sediments. Species benefited from noticeable input of riverine phytodetritus to the sediment during spring bloom conditions (April 2007; e.g. <i>Bolivina dilatata</i>, <i>Nonionella stella</i>, <i>Stainforthia fusiformis</i>), or high amounts of still bio-available organic matter under more oligotrophic conditions (September 2007; e.g. <i>Ammonia tepida</i>, <i>Psammosphaera fusca</i>). The reduced influence of the Rhône River input at the farther Station N led to less contrasted environmental conditions during the four sampling periods, and so to less obvious variations in foraminiferal faunal composition. During reduced riverine influence (i.e. low Rhône discharge), species able to feed on fresh phytodetritus (e.g. <i>Clavulina cylindrica</i>, <i>Hopkinsina atlantica</i>, <i>Nonionella iridea</i> and <i>Nonionella turgida</i>) benefited from eutrophic conditions of the spring bloom (April 2007, May 2008). Conversely, the occurrence of <i>Nouria polymorphinoides</i> under oligotrophic conditions (September 2007, December 2008) was indicative of a benthic environment potentially disturbed by bottom currents. This study put into evidence the extremely rapid response of benthic foraminiferal faunas to strong variations in environmental conditions mostly induced by the Rhône dynamics

    Electrophilic Organoiridiunn(III) Pincer Complexes on Sulfated Zirconia for Hydrocarbon Activation and Functionalization

    Get PDF
    Single-site supported organometallic catalysts bring together the favorable aspects of homogeneous and heterogeneous catalysis while offering opportunities to investigate the impact of metal–support interactions on reactivity. We report a (dmPhebox)Ir(III) (dmPhebox = 2,6-bis(4,4-dimethyloxazolinyl)-3,5-dimethylphenyl) complex chemisorbed on sulfated zirconia, the molecular precursor for which was previously applied to hydrocarbon functionalization. Spectroscopic methods such as diffuse reflectance infrared Fourier transformation spectroscopy (DRIFTS), dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy, and X-ray absorption spectroscopy (XAS) were used to characterize the supported species. Tetrabutylammonium acetate was found to remove the organometallic species from the surface, enabling solution-phase analytical techniques in conjunction with traditional surface methods. Cationic character was imparted to the iridium center by its grafting onto sulfated zirconia, imbuing high levels of activity in electrophilic C–H bond functionalization reactions such as the stoichiometric dehydrogenation of alkanes, with density functional theory (DFT) calculations showing a lower barrier for β-H elimination. Catalytic hydrogenation of olefins was also facilitated by the sulfated zirconia-supported (dmPhebox)Ir(III) complex, while the homologous complex on silica was inactive under comparable conditions
    corecore