827 research outputs found

    G protein-coupled estrogen receptor in GtoPdb v.2023.1

    Get PDF
    The G protein-coupled estrogen receptor (GPER, nomenclature as agreed by the NC-IUPHAR Subcommittee on the G protein-coupled estrogen receptor [26]) was identified following observations of estrogen-evoked cyclic AMP signalling in breast cancer cells [2], which mirrored the differential expression of an orphan 7-transmembrane receptor GPR30 [6]. There are observations of both cell-surface and intracellular expression of the GPER receptor [29, 34]. Selective agonist/ antagonists for GPER have been characterized [26]. Antagonists of the nuclear estrogen receptor, such as fulvestrant [11], tamoxifen [29, 34] and raloxifene [25], as well as the flavonoid 'phytoestrogens' genistein and quercetin [18], are agonists of GPER. Reviews of GPER pharmacology have been published [26]. The roles of GPER in (patho)physiological systems throughout the body (cardiovascular, metabolic, endocrine, immune, reproductive) and in cancer have also been reviewed [26, 27, 20, 17, 9]. The GPER-selective agonist G-1 is currently in Phase I/II clinical trials for cancer (NCT04130516)

    G protein-coupled estrogen receptor (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The G protein-coupled estrogen receptor (GPER, nomenclature as agreed by the NC-IUPHAR Subcommittee on the G protein-coupled estrogen receptor [24]) was identified following observations of estrogen-evoked cyclic AMP signalling in breast cancer cells [2], which mirrored the differential expression of an orphan 7-transmembrane receptor GPR30 [5]. There are observations of both cell-surface and intracellular expression of the GPER receptor [27, 32]. Selective agonist/ antagonists for GPER have been characterized [24]. Antagonists of the nuclear estrogen receptor, such as fulvestrant [10], tamoxifen [27, 32] and raloxifene [23], as well as the flavonoid 'phytoestrogens' genistein and quercetin [16], are agonists of GPER. A complete review of GPER pharmacology has been recently published [24]. The roles of GPER in physiological systems throughout the body (cardiovascular, metabolic, endocrine, immune, reproductive) and in cancer have also been reviewed [24, 25, 18, 15, 8]

    Foreword

    Get PDF

    G protein-coupled estrogen receptor in GtoPdb v.2021.3

    Get PDF
    The G protein-coupled estrogen receptor (GPER, nomenclature as agreed by the NC-IUPHAR Subcommittee on the G protein-coupled estrogen receptor [25]) was identified following observations of estrogen-evoked cyclic AMP signalling in breast cancer cells [2], which mirrored the differential expression of an orphan 7-transmembrane receptor GPR30 [6]. There are observations of both cell-surface and intracellular expression of the GPER receptor [28, 33]. Selective agonist/ antagonists for GPER have been characterized [25]. Antagonists of the nuclear estrogen receptor, such as fulvestrant [11], tamoxifen [28, 33] and raloxifene [24], as well as the flavonoid 'phytoestrogens' genistein and quercetin [17], are agonists of GPER. A complete review of GPER pharmacology has been published [25]. The roles of GPER in physiological systems throughout the body (cardiovascular, metabolic, endocrine, immune, reproductive) and in cancer have also been reviewed [25, 26, 19, 16, 9]. The GPER-selective agonist G-1 is currently in Phase I/II clinical trials for cancer (NCT04130516)

    GPER (G protein-coupled estrogen receptor 1)

    Get PDF
    Review on GPER (G protein-coupled estrogen receptor 1), with data on DNA, on the protein encoded, and where the gene is implicated

    Activation of GPER-1 estradiol receptor downregulates production of testosterone in isolated rat Leydig cells and adult human testis.

    Get PDF
    PURPOSE: Estradiol (E2) modulates testicular functions including steroidogenesis, but the mechanisms of E2 signaling in human testis are poorly understood. GPER-1 (GPR30), a G protein-coupled membrane receptor, mediates rapid genomic and non-genomic response to estrogens. The aim of this study was to evaluate GPER-1 expression in the testis, and its role in estradiol dependent regulation of steroidogenesis in isolated rat Leydig cells and human testis. MATERIALS AND METHODS: Isolated Leydig cells (LC) from adult rats and human testicular tissue were used in this study. Expression and localization studies of GPER-1 were performed with qRT-PCR, immunofluorescence, immunohistochemistry and Western Blot. Luteinizing Hormone (LH) -stimulated, isolated LC were incubated with estradiol, G-1 (GPER-1-selective agonist), and estrogen receptor antagonist ICI 182,780. Testosterone production was measured with radioimmunoassay. LC viability after incubation with G-1 was measured using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. RESULTS: GPER-1 mRNA is abundantly expressed in rat LC and human testis. Co-localization experiments showed high expression levels of GPER-1 protein in LC. E2-dependent activation of GPER-1 lowers testosterone production in isolated rats LCs and in human testis, with statistically and clinically significant drops in testosterone production by 20-30% as compared to estradiol-naïve LC. The exposure to G-1 does not affect viability of isolated LCs. CONCLUSIONS: Our results indicate that activation of GPER-1 lowers testosterone levels in the rat and human testis. The expression of GPER-1 in human testis, which lack ERα, makes it an exciting target for developing new agents affecting testosterone production in men

    Estrogens Promote the Production of Natural Neutralizing Antibodies in Fish through G Protein-Coupled Estrogen Receptor 1.

    Get PDF
    Natural antibodies play crucial roles in pathogen elimination, B-cell survival and homeostasis, and inflammatory and autoimmune diseases. Although estrogens are able to regulate both innate and adaptive immune responses, their role in the production of natural antibodies is unknown. Here, we show that the dietary intake of the synthetic estradiol analog, 17α-ethinylestradiol (EE2), one of the most potent pharmaceutical estrogens and intensively used in human therapeutics as a component of most oral contraceptives, regulates the abundance and proliferation of T and IgM+ B lymphocytes in the teleost fish gilthead seabream (Sparus aurata L.). Furthermore, for the first time in vertebrates, it is shown that estrogen signaling through G protein-coupled estrogen receptor 1 (GPER1) induces the production of polyreactive natural antibodies, which are able to crossreact with unrelated antigens and commensal and pathogenic bacteria. In addition, the serum from fish treated with EE2 or the GPER1 agonist G1 shows higher complement-dependent bactericidal activity than that from non-treated specimens. These results demonstrate that estrogens and GPER1 are the key regulators of natural antibody production and pathogen clearance in fish, paving the way for future studies in other vertebrate classes.Versión del edito

    Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues

    Get PDF
    Recently, the G protein-coupled receptor GPR30 has been identified as a novel oestrogen receptor (ER). The distribution of the receptor has been thus far mapped only in the rat central nervous system. This study was undertaken to map the distribution of GPR30 in the mouse brain and rodent peripheral tissues. Immunohistochemistry using an antibody against GPR30 revealed high levels of GPR30 immunoreactivity (ir) in the forebrain (e.g. cortex, hypothalamus and hippocampus), specific nuclei of the midbrain (e.g. the pontine nuclei and locus coeruleus) and the trigeminal nuclei and cerebellum Purkinje layer of the hindbrain in the adult mouse brain. In the rat and mouse periphery, GPR30-ir was detected in the anterior, intermediate and neural lobe of the pituitary, adrenal medulla, renal pelvis and ovary. In situ hybridisation histochemistry using GPR30 riboprobes, revealed intense hybridisation signal for GPR30 in the paraventricular nucleus and supraoptic nucleus (SON) of the hypothalamus, anterior and intermediate lobe of the pituitary, adrenal medulla, renal pelvis and ovary of both rat and mouse. Double immunofluorescence revealed GPR30 was present in both oxytocin and vasopressin neurones of the paraventricular nucleus and SON of the rat and mouse brain. The distribution of GPR30 is distinct from the other traditional ERs and offers an additional way in which oestrogen may mediate its effects in numerous brain regions and endocrine systems in the rodent
    corecore