6 research outputs found

    Extragalactic radio sources with sharply inverted spectrum at metre wavelengths

    Full text link
    We present the first results of a systematic search for the rare extragalactic radio sources showing an inverted (integrated) spectrum, with spectral index α≄+2.0\alpha \ge +2.0, a previously unexplored spectral domain. The search is expected to yield strong candidates for α≄+2.5\alpha \ge +2.5, for which the standard synchrotron self-absorption (characterized by a single power-law energy distribution of relativistic electron population) would not be a plausible explanation, even in an ideal case of a perfectly homogeneous source of incoherent synchrotron radiation. Such sharply inverted spectra, if found, would require alternative explanations, e.g., free-free absorption, or non-standard energy distribution of relativistic electrons which differs from a power-law (e.g., Maxwellian). The search was carried out by comparing two sensitive low-frequency radio surveys made with sub-arcminute resolution, namely, the WISH survey at 352 MHz and TGSS/DR5 at 150 MHz. The overlap region between these two surveys contains 7056 WISH sources classified as `single' and brighter than 100 mJy at 352 MHz. We focus here on the seven of these sources for which we find α>+2.0\alpha > +2.0. Two of these are undetected at 150 MHz and are particularly good candidates for α>+2.5\alpha > +2.5. Five of the seven sources exhibit a `Gigahertz-Peaked-Spectrum' (GPS).Comment: 8 pages, 2 figures, accepted for publication in MNRA

    Analytic formulas for frequency and size dependence of absorption and scattering efficiencies of astronomical polycyclic aromatic hydrocarbons

    Full text link
    In a series of two recent papers, the frequency and size distribution dependence of extinction spectra for astronomical silicate and graphite grains was analyzed by us in the context of MRN type interstellar dust models. These grains were taken to be homogeneous spheres following the power law (a−3.5)(a^{-3.5}) size distribution which is very much in use. The analytic formulas were obtained for the graphite and silicate grains in wavelength range 1000\AA - 22,500\AA and their utility was demonstrated. In this paper of the series, we present analytic formulas for the scattering and absorption spectrum of another important constituent of interstellar dust models, namely, the polycyclic aromatic hydrocarbons (PAHs). Relative contribution of the PAHs to extinction {\it vis a vis} carbonaceous classical grains has been examined.Comment: 19 pages, 4 figures, to appear in JQSRT 201

    Age dating of an early Milky Way merger via asteroseismology of the naked-eye star Μ Indi

    Get PDF
    Over the course of its history, the Milky Way has ingested multiple smaller satellite galaxies1. Although these accreted stellar populations can be forensically identified as kinematically distinct structures within the Galaxy, it is difficult in general to date precisely the age at which any one merger occurred. Recent results have revealed a population of stars that were accreted via the collision of a dwarf galaxy, called Gaia–Enceladus1, leading to substantial pollution of the chemical and dynamical properties of the Milky Way. Here we identify the very bright, naked-eye star Îœ Indi as an indicator of the age of the early in situ population of the Galaxy. We combine asteroseismic, spectroscopic, astrometric and kinematic observations to show that this metal-poor, alpha-element-rich star was an indigenous member of the halo, and we measure its age to be 11.0±0.7 (stat) ±0.8 (sys) billion years. The star bears hallmarks consistent with having been kinematically heated by the Gaia–Enceladus collision. Its age implies that the earliest the merger could have begun was 11.6 and 13.2 billion years ago, at 68% and 95% confidence, respectively. Computations based on hierarchical cosmological models slightly reduce the above limits

    A Hot Saturn Orbiting an Oscillating Late Subgiant Discovered by TESS

    Get PDF
    © 2019. The American Astronomical Society. All rights reserved.. We present the discovery of HD 221416 b, the first transiting planet identified by the Transiting Exoplanet Survey Satellite (TESS) for which asteroseismology of the host star is possible. HD 221416 b (HIP 116158, TOI-197) is a bright (V = 8.2 mag), spectroscopically classified subgiant that oscillates with an average frequency of about 430 ÎŒHz and displays a clear signature of mixed modes. The oscillation amplitude confirms that the redder TESS bandpass compared to Kepler has a small effect on the oscillations, supporting the expected yield of thousands of solar-like oscillators with TESS 2 minute cadence observations. Asteroseismic modeling yields a robust determination of the host star radius (R∗ = 2.943 ± 0.064 Ro), mass (M∗ = 1.212 ± 0.074 Mo), and age (4.9 ± 1.1 Gyr), and demonstrates that it has just started ascending the red-giant branch. Combining asteroseismology with transit modeling and radial-velocity observations, we show that the planet is a "hot Saturn" (Rp = 9.17 ± 0.33 R⊕) with an orbital period of ∌14.3 days, irradiance of F = 343 ± 24 F⊕, and moderate mass (Mp = 60.5 ± 5.7 M⊕) and density (ρp = 0.431 ± 0.062 g cm-3). The properties of HD 221416 b show that the host-star metallicity-planet mass correlation found in sub-Saturns (4-8 R⊕) does not extend to larger radii, indicating that planets in the transition between sub-Saturns and Jupiters follow a relatively narrow range of densities. With a density measured to ∌15%, HD 221416 b is one of the best characterized Saturn-size planets to date, augmenting the small number of known transiting planets around evolved stars and demonstrating the power of TESS to characterize exoplanets and their host stars using asteroseismology
    corecore