693 research outputs found

    Low grade Ductal Carcinoma in situ (DCIS): how best to describe it?

    Get PDF
    BACKGROUND: In the absence of definitive data about the natural history of DCIS the appropriateness of describing DCIS as cancer is controversial. METHODS: We conducted a survey amongst British Breast Group (BBG) members, to determine which descriptions of DCIS were deemed most accurate and appropriate. RESULTS: 54/73 (74%) attendees completed the survey: A majority (34/54; 63%) said they would be comfortable using the description that explained DCIS as abnormal cells in the milk ducts that had not spread into other breast tissue and which did not need urgent treatment as if it was breast cancer and this description was overall the most preferred (24/54; 44%). CONCLUSIONS: Little consensus exists regarding how best to explain low grade DCIS to patients

    Clinical progress and pharmacology of small molecule bromodomain inhibitors

    Get PDF
    Bromodomains have emerged as an exciting target class for drug discovery over the past decade. Research has primarily focused on the bromodomain and extra terminal (BET) family of bromodomains, which has led to the development of multiple small molecule inhibitors and an increasing number of clinical assets. The excitement centred on the clinical potential of BET inhibition has stimulated intense interest in the broader family and the growing number of non-BET bromodomain chemical probes has facilitated phenotypic investigations, implicating these targets in a variety of disease pathways including cancer, inflammation, embryonic development and neurological disorders

    The shifting nature of women’s experiences and perceptions of ductal carcinoma in situ

    Get PDF
    Aim: This paper is a report of a descriptive qualitative study of the evolution of women’s perceptions and experiences of ductal carcinoma in situ from the period near to diagnosis to one year later. Background: Ductal carcinoma in situ is a non-invasive breast condition where cancer cells are detected but confined to the ducts of the breast. With treatment, the condition has a positive prognosis but ironically patients undergo treatment similar to that for invasive breast cancer. There is a lack of longitudinal qualitative research studying women’s experiences of ductal carcinoma in situ, especially amongst newly diagnosed patients and how experiences change over time. Methods: Forty-five women took part in an initial interview following a diagnosis of ductal carcinoma in situ and twenty-seven took part in a follow-up interview 9-13 months later. Data were collected between January 2007 and October 2008. Transcripts were analysed using a hybrid approach to thematic analysis. Findings: Women’s early perceptions of ductal carcinoma in situ merged and sometimes conflicted with their lay beliefs of breast cancer. Perceptions and experiences of the condition shifted over time. These overriding aspects were evident within four themes identified across the interviews: 1) perceptions of DCIS versus breast cancer, 2) from paradox to acceptance, 3) personal impact, and 4) support and interactions with others. Conclusion: This study represents one of the few longitudinal qualitative studies with newly diagnosed patients, capturing women’s initial and shifting experiences and perceptions of the condition. The issues identified need to be recognised in clinical practice and supported appropriately

    Epigenetic modulation of type-1 diabetes via a dual effect on pancreatic macrophages and β cells

    Get PDF
    Epigenetic modifiers are an emerging class of anti-tumor drugs, potent in multiple cancer contexts. Their effect on spontaneously developing autoimmune diseases has been little explored. We report that a short treatment with I-BET151, a small-molecule inhibitor of a family of bromodomain-containing transcriptional regulators, irreversibly suppressed development of type-1 diabetes in NOD mice. The inhibitor could prevent or clear insulitis, but had minimal influence on the transcriptomes of infiltrating and circulating T cells. Rather, it induced pancreatic macrophages to adopt an anti-inflammatory phenotype, impacting the NF-κB pathway in particular. I-BET151 also elicited regeneration of islet β-cells, inducing proliferation and expression of genes encoding transcription factors key to β-cell differentiation/function. The effect on β cells did not require T cell infiltration of the islets. Thus, treatment with I-BET151 achieves a ‘combination therapy’ currently advocated by many diabetes investigators, operating by a novel mechanism that coincidentally dampens islet inflammation and enhances β-cell regeneration. DOI: http://dx.doi.org/10.7554/eLife.04631.00

    BET protein inhibition shows efficacy against JAK2V617F-driven neoplasms.

    Get PDF
    Small molecule inhibition of the BET family of proteins, which bind acetylated lysines within histones, has been shown to have a marked therapeutic benefit in pre-clinical models of mixed lineage leukemia (MLL) fusion protein-driven leukemias. Here, we report that I-BET151, a highly specific BET family bromodomain inhibitor, leads to growth inhibition in a human erythroleukemic (HEL) cell line as well as in erythroid precursors isolated from polycythemia vera patients. One of the genes most highly downregulated by I-BET151 was LMO2, an important oncogenic regulator of hematopoietic stem cell development and erythropoiesis. We previously reported that LMO2 transcription is dependent upon Janus kinase 2 (JAK2) kinase activity in HEL cells. Here, we show that the transcriptional changes induced by a JAK2 inhibitor (TG101209) and I-BET151 in HEL cells are significantly over-lapping, suggesting a common pathway of action. We generated JAK2 inhibitor resistant HEL cells and showed that these retain sensitivity to I-BET151. These data highlight I-BET151 as a potential alternative treatment against myeloproliferative neoplasms driven by constitutively active JAK2 kinase.The Kouzarides laboratory was supported by Cancer Research UK, Leukaemia and Lymphoma Research, GlaxoSmithKline and BBSRC. The Green laboratory was supported by Cancer Research UK and Leukaemia and Lymphoma Research, UK. The Gottgens laboratory was supported by Cancer Research UK and Leukaemia and Lymphoma Research, UK. The Huntly laboratory was supported by Cancer Research UK and Leukaemia and Lymphoma Research, UK. M. A Dawson, E Cannizzaro and M. Wiese are funded by the Wellcome Trust Beit Fellowship.This is the accepted manuscript version of the article. The final version is available from http://www.nature.com/leu/journal/v28/n1/full/leu2013234a.html

    Progress in the development of non-​BET bromodomain chemical probes

    Get PDF
    The bromodomain and extra terminal (BET) family of bromodomains have been the focus of extensive research, leading to the development of many potent, selective chem. probes and recent clinical assets. The profound biol. associated with BET bromodomain inhibition has provided a convincing rationale for targeting bromodomains for the treatment of disease. However, the BET family represents just eight of the at least 56 human bromodomains identified to date. Until recently, there has been significantly less interest in non-​BET bromodomains, leaving a vast area of research and the majority of this new target class yet to be thoroughly investigated. It has been widely reported that several non-​BET bromodomain containing. proteins are associated with various diseases including cancer and HIV. Therefore, the development of chem. probes for non-​BET bromodomains will facilitate elucidation of their precise biol. roles and potentially lead to the development of new medicines. This review summarises the progress made towards the development of non-​BET bromodomain chem. probes to date. In addn., we highlight the potential for future work in this new and exciting area

    Selective small molecule induced degradation of the BET bromodomain protein BRD4

    Get PDF
    The Bromo- and Extra-Terminal (BET) proteins BRD2, BRD3, and BRD4 play important roles in transcriptional regulation, epigenetics, and cancer and are the targets of pan-BET selective bromodomain inhibitor JQ1. However, the lack of intra-BET selectivity limits the scope of current inhibitors as probes for target validation and could lead to unwanted side effects or toxicity in a therapeutic setting. We designed Proteolysis Targeted Chimeras (PROTACs) that tether JQ1 to a ligand for the E3 ubiquitin ligase VHL, aimed at triggering the intracellular destruction of BET proteins. Compound MZ1 potently and rapidly induces reversible, long-lasting, and unexpectedly selective removal of BRD4 over BRD2 and BRD3. The activity of MZ1 is dependent on binding to VHL but is achieved at a sufficiently low concentration not to induce stabilization of HIF-1α. Gene expression profiles of selected cancer-related genes responsive to JQ1 reveal distinct and more limited transcriptional responses induced by MZ1, consistent with selective suppression of BRD4. Our discovery opens up new opportunities to elucidate the cellular phenotypes and therapeutic implications associated with selective targeting of BRD4

    Inhibition of BET proteins and epigenetic signaling as a potential treatment for osteoporosis

    Get PDF
    International audienceHistone modifications are important for maintaining the transcription program. BET proteins, an important class of " histone reading proteins " , have recently been described as essential in bone biology. This study presents the therapeutic opportunity of BET protein inhibition in osteoporosis. We find that the pharmacological BET protein inhibitor JQ1 rescues pathologic bone loss in a post-ovariectomy osteoporosis model by increasing the trabecular bone volume and restoring mechanical properties. The BET protein inhibition suppresses osteoclast differentiation and activity as well as the osteoblastogenesis in vitro. Moreover, we show that treated non-resorbing osteoclasts could still activate osteoblast differentiation. In addition, specific inhibition of BRD4 using RNA interference inhibits osteoclast differentiation but strongly activates osteoblast mineralization activity. Mechanistically, JQ1 inhibits expression of the master osteoclast transcription factor NFATc1 and the transcription factor of osteoblast Runx2. These findings strongly support that targeting epigenetic chromatin regulators such as BET proteins may offer a promising alternative for the treatment of bone-related disorders such as osteoporosis
    corecore