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Abstract 

Bromodomains have emerged as an exciting target class for drug discovery over the past 
decade. Research has primarily focused on the bromodomain and extra terminal (BET) 
family of bromodomains, which has led to the development of multiple small molecule 
inhibitors and an increasing number of clinical assets. The excitement centred on the clinical 
potential of BET inhibition has stimulated intense interest in the broader family and the 
growing number of non-BET bromodomain chemical probes has facilitated phenotypic 
investigations, implicating these targets in a variety of disease pathways including cancer, 
inflammation, embryonic development and neurological disorders.   

  

Introduction 

As a result of the understanding that a failure to appropriately control gene expression may 
underlie most human diseases, epigenetics and the promise of epigenetic therapeutics has 
rapidly grown into one of the most promising and fertile areas of drug discovery.1  There are 
at least 56 human bromodomains and these reader modules selectively recognise acetyl 
lysine (KAc) residues present in both histone and non-histone proteins (Figure 1).  Since the 
first disclosure in 2005 that a small molecule was capable of binding to a bromodomain,2 the 
number of reported inhibitors has expanded drastically, particularly in the past six years, with 
the disclosure of a large number of small molecule bromodomain chemical probes.  The 
profound and broad pharmacology of bromodomain inhibition, especially that associated with 
the BET family of bromodomains (BRD2, BRD3, BRD4 and BRDT), has led to the 
progression of a number of small molecule assets into the clinic.  Herein, we discuss the 
exciting progress of BET bromodomain inhibitors currently undergoing human clinical trials 
and the emerging pharmacology associated with the less mature field of chemical probes 
targeting bromodomains outside of the BET family.  

                                                           
1 Present address: Flexible Discovery Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, 
SG1 2NY, U.K. 
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Figure 1: Small molecule bromodomain inhibitor binding to a bromodomain and 

displacing KAc from the binding site.  This interaction typically leads to broad 

pharmacology and has been implicated in a variety of human disease. 

 

BET bromodomain inhibitors in clinical trials 

There has been significant interest in the BET family of bromodomains due to their potential 
as therapeutic targets for a number of diseases including cancer, inflammation and 
cardiovascular disease. The first inhibitors reported for the BET family of bromodomains 
were structurally related I-BET762 (1)3,4 ,5 and (+)-JQ1 (2)6 reported by GlaxoSmithKline 
(GSK) and the Structural Genomics Consortium (SGC) respectively (Figure 2).  

 

Figure 2: Chemical structures of BET bromodomain inhibitors I-BET762 (1), (+)-JQ1 

(2), OTX015 (3) and RVX-208 (4). 
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This disclosure and ready availability of high quality small molecules such as I-BET762 (1) 
and (+)-JQ1 (2) stimulated academic and industrial research in the field. The development of 
a wide number of BET bromodomain chemical probes including I–BET762 (1) and (+)-JQ1 
(2) and their biological effects has been widely reported in a number of excellent 
reviews 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14  however, the constantly growing numbers of patents and BET 
inhibitors in reported pre-clinical and clinical development highlights the substantial interest 
and investment in the potential of BET bromodomain inhibition for improving human health. 
As of January 2016, there are 14 small molecule BET inhibitors registered as undergoing 
clinical trials in a total of 20 studies (Table 1).  

Table 1: BET bromodomain inhibitors registered as undergoing human clinical trials 

Compound Sponsor Indication(s) Status NCT number 

ABBV-075 AbbVie 
Advanced Cancer, Breast Cancer, 
NSCLC, AML, Multiple Myeloma 

Phase I (recruiting) NCT02391480 

BAY 1238097 Bayer Neoplasms 
Phase I (active, not 

recruiting) 
NCT02369029 

BI 894999 
Boehringer 
Ingelheim 

Advanced Solid Tumours Phase I (recruiting) NCT02516553 

BMS-986158 
Bristol-Myers 

Squibb 
Multiple Indications Cancer 

Phase I/IIa 
(recruiting) 

NCT02419417 

CPI-0610 
Constellation 

Pharmaceuticals 
Lymphoma Phase I (recruiting) NCT01949883 

“ “ Multiple Myeloma Phase I (recruiting) NCT02157636 

“ “ AML MDS, MDS/MPN Phase I (recruiting) NCT02158858 

FT-1101 
Forma 

Therapeutics 
AML, MDS Phase I (recruiting) NCT02543879 

INCB054329 
Incyte 

Corporation 
Advanced Cancer 

Phase I/II 
(recruiting) 

NCT02431260 

GSK525762/ 

I-BET762 (1) 
GlaxoSmithKline NMC; Other Cancers Phase I (recruiting) NCT01587703 

“ “ Hematologic Malignancies Phase I (recruiting) NCT01943851 

GSK2820151 “ Solid Tumors 
Phase I (not yet 

recruiting) 
NCT02630251 

GS-5829 Gilead Sciences CRPC Phase I (recruiting) NCT02607228 

N-Methyl-
Pyrrolidone 

Peter MacCallum 
Cancer Centre, 

Australia 
Multiple Myeloma 

Phase I (not yet 
recruiting) 

NCT02468687 

OTX015/ 

MK-8628 (3) 

OncoEthix GmbH 
(now Merck) 

AML, hematologic malignancies Phase I (recruiting) NCT01713582 

“ “ NMC, TNBC; NSCLC, CRPC; 
Pancreatic Ductal Adenocarcinoma 

Phase Ib (recruiting) NCT02259114 

“ “ Glioblastoma Multiforme 
Phase IIa 

(terminated) 
NCT02296476 
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RVX-208/ 

Apabetalone (4) 
Resverlogix Corp T2DM; CAD; Cardiovascular Diseases Phase III (recruiting) NCT02586155 

TEN-010 
Tensha 

Therapeutics 
(now Roche) 

AML, MDS Phase I (recruiting) NCT02308761 

“ “ Solid Tumors Phase I (recruiting) NCT01987362 

Structures, where known, are shown in Figure 2.  Abbreviations: AML, Acute Myeloid Leukemia; CAD, Coronary Heart Disease; 
CRPC, Castrate Resistant Prostate Cancer; MDS/MPN, Myelodysplastic/Myeloproliferative Neoplasms; NMC, Nut-Midline 
Carcinoma; NSCLC, Non-Small Cell Lung Cancer; TNBC, Triple Negative Breast Cancer; T2DM, Type 2 Diabetes mellitus. 

The vast majority of BET inhibitors undergoing human clinical trials are initially being 
investigated in an oncology setting (Table 1).  Due to the ongoing nature of most of these 
clinical studies, there are limited data available.  However, OncoEthix (acquired by Merck in 
2014) have completed a Phase I trial in patients with acute myeloid leukemia (AML) and 
other haematological malignancies with OTX015/MK-8628 (3).15,16,17,18 This orally available 
molecule is well tolerated up to 80 mg once a day (QD) with diarrhoea/fatigue and reversible 
thrombocytopenia observed as the dose limiting toxicity in patients with AML and other 
haematological malignancies respectively. Trough plasma concentrations at 80 mg QD 
reached the GI50 concentration of 500 nM for sensitive tumor cell lines in vitro  and clinically 
meaningful activity was seen in AML and lymphoma patients.  These encouraging responses 
have led to progression of OTX015/MK-8628 (3) into additional clinical trials. 

Constellation have reported a preliminary analysis of an ongoing Phase I trial with CPI-0610 
in lymphoma patients. 19  The compound is well tolerated and similar to that seen with 
OTX015/MK-8628 (3), the principal toxicity was reversible thrombocytopenia. Expression of 
the BET target gene chemokine C-C motif receptor 1 (CCR1) was suppressed at 170 mg 
and 230 mg QD, associated with plasma CPI-0610 concentrations ≥3 µM and anti-
lymphoma activity has been observed in patients with 80-230 mg QD doses.   

Tensha Therapeutics (acquired by Roche in 2016) have reported clinical efficacy and 
tolerability in three NUT-midline carcinoma (NMC) patients with subcutaneous QD dosing of 
TEN-010 for three weeks in a four-week cycle.20 The compound and dosing regimen was 
tolerated with reversible irritation of the injection site, increases of bilirubin and anorexia 
reported.  This observed efficacy in three NMC patients with TEN-010 provides hope that 
BET inhibition may provide a treatment for this rare and clinically aggressive cancer. 

There are ten other companies progressing BET bromodomain inhibitors in oncology clinical 
trials for both solid and haematological malignancies (Table 1).  However, of note is the 
Peter MacCallum Cancer Centre in Australia who have entered N-methyl-pyrrolidone (NMP) 
into human trials for cancer. It has been reported that this common laboratory solvent can 
act as a low affinity broad spectrum bromodomain inhibitor with binding demonstrated to 
multiple bromodomains including BET.  In a mouse model of myeloma, treatment with NMP 
demonstrated antineoplastic and immunomodulatory activity consistent with BET inhibition.21 

Outside of oncology, the most advanced bromodomain inhibitor undergoing clinical trials is 
RVX-208 (4), also known as Apabetalone.  This compound,  identified via an ApoA1 
upregulation phenotypic screen,22 is selective for the second BET bromodomain23 and has 
completed Phase II clinical trials for a number of cardiovascular diseases including coronary 
artery disease, type II diabetes mellitus and atherosclerosis.24 A post-hoc analysis from two 
pooled Phase II trials (NCT01423188 and NCT01067820) demonstrated that patients with 
cardiovascular disease had a statistically significant decrease in major adverse 
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cardiovascular events (MACE) when given RVX-208 (4).  As such, this compound has 
recently entered a Phase III trial titled ‘BETonMACE’ aiming to reduce MACE in high-risk 
type II diabetes mellitus patients with coronary artery disease and low high-density 
lipoprotein.25 

 

Non-BET bromodomain chemical probes 

High quality chemical probes are an important tool for preclinical target validation26,27 and 
there have been many important contributions from both academic and industrial 
laboratories in the development and biological testing of non-BET bromodomain chemical 
probes.8-14,28  Due to the profound and wide-ranging biology associated with BET family 
bromodomain inhibition, BET selectivity is an essential criteria during generation of a 
chemical probe and in this review we focus on the recent developments of those non-BET 
bromodomain chemical probes with a reported structure, selectivity over BET and 
demonstrated pharmacology (Figure 3). 

 

Figure 3: Chemical structures of selected non-BET bromodomain chemical probes 

targeting (a) BRD9 and BRD7/9l (b) CREBBP/EP300 and (c) SMARCA2/4 and PB1(5). 
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Initial start points for the optimisation of these compounds are included where 

known.  

 

BRD7 and BRD9 

Although the precise biological role of bromodomain containing protein 9 (BRD9) is currently 
unknown, it has been reported as a component of the switch/sucrose non-fermentable 
(SWI/SNF) brahma-related gene 1-associated factor (BAF) complex, which plays a key role 
in chromatin remodelling and transcription control. 29  Highly homologous bromodomain 
containing protein 7 (BRD7) is a component of the SWI/SNF polybromo-associated BAF 
(PBAF) complex and has been proposed as a tumor suppressor.30 Within the last year, there 
have been several publications focussing on BRD9 and dual BRD7/9 chemical probe 
development.31,32,33  

GSK and the University of Strathclyde identified I-BRD9 (6) as the first selective chemical 
probe for BRD9 (Figure 3a).34 Using structure-based design, I-BRD9 (6) was developed from 
tertiary amide 5. Critical to the success of the programme was the identification of the BET 
selective amidine moiety and the N-ethyl group which provided selectivity over the broader 
bromodomain families. I-BRD9 (6) shows excellent activity (BRD9 Kd: 1.9 nM) and is ≥70 
fold selective over every other bromodomain tested, including the highly homologous BRD7.  
This remarkable selectivity profile with activity for a single bromodomain allowed 
investigation of the pharmacology of BRD9 bromodomain binding. In a cell line model of 
human acute myeloid leukaemia, Kasumi-1 cells were treated with I-BRD9 (6) and BET 
bromodomain chemical probe I-BET151. 35  Transcriptomic analysis demonstrated that 
although there was some overlap, the majority of genes were selectively regulated by I-
BRD9 (6), including CLEC1, DUSP6, FES, and SAMSN1, which have been implicated in 
cancer and immunology pathways.  

In parallel, research by the University of Oxford and the SGC, led to the discovery of LP99 
(8) as the first reported dual BRD7/9 chemical probe (Figure 3a).36 Using fragment quinolone 
7 as a start point, LP99 (8) was developed using structure-based design to guide 
introduction of a 4-methyl group to occupy a shallow hydrophobic pocket and a complex 
lactam to the quinolone 7-position to obtain the desired potency and selectivity. LP99 (8) 
displays excellent BRD9 (Kd: 99 nM) and BRD7 (Kd: 909 nM) activities, with good selectivity 
across the broader bromodomain families.  Importantly, no activity was seen against the 
BET family which allows straightforward use of LP99 (8) in phenotypic investigations of 
BRD7/9 inhibition. Studies demonstrated that LP99 (8) inhibited the secretion of pro-
inflammatory cytokine interleukin-6 (IL-6) in human THP-1 monocytes when stimulated with 
lipopolysaccharide (LPS).  The inhibition of the expression of this clinically relevant cytokine 
implicates BRD7/9 as a potential target for the treatment of rheumatoid arthritis.37   

Further confidence in the potential of BRD7/9 bromodomain inhibitors for the treatment of 
disease comes from a patent from Genentech and Constellation Pharmaceuticals.38 These 
companies disclosed data that BRD7/9 inhibitors (structures not shown in patent) play an 
important role in the regulation of type 2 helper T cells (Th2) cytokine expression. In 
particular, these compounds were found to inhibit the production of IL-4, IL-5 and IL-13 in 
human Th2 cells, cytokines implicated in a variety of inflammatory and respiratory disorders. 

 

CREBBP and EP300 
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Beyond the BET family, transcriptional co-activator cAMP response element binding protein 
(CREB) binding protein (CREBBP) and the evolutionary conserved adenoviral E1A binding 
protein (EP300) have received significant attention due to reported roles in cancer, 
inflammation and embryonic development.39,40,41 Together with important contributions from 
multiple academic laboratories, 42 , 43 , 44 , 45  several BET selective chemical probes have 
provided an indication of the role of the CREBBP and EP300 bromodomains in human 
disease (Figure 3b).  

SGC-CBP30 (10) was developed through a collaboration between the SGC and the 
University of Oxford starting from unselective fragment 9.46,47 SGC-CBP30 (10) is a potent 
binder of CREBBP and EP300 (Kd: 21 and 35 nM respectively) and importantly is 40 fold 
selective over BRD4.  SGC-CBP30 (10) has been shown to reduce immune cell production 
of Th17 and other pro-inflammatory cytokines in cells derived from ankylosing spondylitis 
and psoriatic arthritis patients.  Profiling SGC-CBP30 (10) at 1.1 or 0.37 µM in a BioMAP 
panel of primary human cell types also revealed distinct immunomodulatory effects, whereas 
at higher concentrations the profiles overlapped with that of BET inhibitor (+)-JQ-1 (2). 

Structurally related PF-CBP1 (11) was reported by researchers at Pfizer as a dual chemical 
probe for CREBBP and EP300.48 Although less potent than SGC-CBP30 (10), PF-CBP1 (11) 
is more selective with CREBBP Kd: 190 nM and >105 fold selectivity against BRD4.  Moving 
from an aryl methoxy group to an aryl propoxy group was critical in reducing BRD4 potency 
while retaining CREBBP activity for this compound.  Phenotypic studies showed that PF-
CBP1 (11) moderately reduced levels of IL-6, IL-1ȕ and interferon-ȕ in an LPS stimulated 
mouse macrophage cell line, whereas structurally related negative control compound ISOX-
INACT (12) did not.  Further supporting the role of CREBBP/EP300 in inflammation, the 
gene expression signature of primary macrophages treated with PF-CBP1 (11) showed 
specific modulation of inflammatory genes that was differentiated to that seen with BET 
inhibitor I-BET-762 (1).  In addition, profiling in rat neurons revealed that PF-CBP1 (11) 
downregulated regulator of G-protein signalling 4 (RGS4), a target implicated in Parkinson’s 
disease. 

A collaboration between the SGC and GSK provided structurally distinct I-CBP112 (13) as a 
dual chemical probe for CREBBP and EP300.49 Although details of the development have 
not yet been disclosed, I-CBP112 (13) is active against CREBBP (Kd: 151 nM) and EP300 
(Kd: 625 nM), with selectivity across the bromodomain family and 37 fold selectivity over 
BRD4.  Biological studies with I-CBP112 (13) showed substantially impaired colony 
formation and induced cellular differentiation in human and mouse leukemic cell lines.  The 
leukaemia-initiating potential of AML cells was also reduced both in vitro and in vivo. 

As well as the BRD7/9 patents previously discussed, Genentech and Constellation 
Pharmaceuticals have also patented tetrahydroquinoxaline compounds as inhibitors of 
CREBBP and EP300.50 These compounds are disclosed for use in cancer immunotherapy 
due to their involvement in the regulation of regulatory T cell function.  

 

SMARCA2/4 and PB1(5) 

Like BRD9, SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, 
subfamily A, member 2 (SMARCA2) and related SMARCA4 have been reported as 
components of the mammalian chromatin remodelling SWI/SNF complexes. Loss of function 
of SMARCA4 and components of SWI/SNF has also been linked to cancer development and 
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proposed as targets for treatment. 51 , 52  Pfizer and the SGC disclosed PFI-3 (15) as a 
chemical probe for SMARCA2/4 and polybromo-1, bromodomain-5 [PB1(5)] with selectivity 
over the BET family (Figure 3c). 53  Developed from salicylic acid (14), PFI-3 (15) 
demonstrates a highly unusual bromodomain binding mode which displaced four water 
molecules at the binding site which are highly conserved across a large number of 
bromodomain crystal structures.  The bridged piperazine group not only provides shape 
complementarity to the bromodomain, positioning the pyridine ring within a hydrophobic 
pocket, it is also important to sterically protect the enamine from hydrolysis. Exposure of 
embryonic stem cells to PFI-3 (15) significantly altered gene expression programs that are 
important for stem cell differentiation, whereas negative control PFI-3oMet (16) did not. In 
addition, PFI-3 (15) induced enhanced differentiation of trophoblast stem cells, implicating 
the SMARCA2/4 and PB1(5) bromodomains in stem cell maintenance and differentiation.  
Further demonstrating the importance and utility of high quality chemical probes, PFI-3 (15) 
has also been used to invalidate the bromodomain as a target in SWI/SNF-mutant cancers.54  

 

Future perspectives 

The profound pharmacology of BET bromodomain inhibition has led to the instigation of 
multiple human clinical trials with small molecule BET bromodomain inhibitors.  The progress 
of these assets is highly encouraging, with clinical efficacy being reported in multiple trials.  
However, as these mainly early phase trials are still ongoing, the true potential of BET 
bromodomain inhibitors for treating human disease will be unveiled over the coming years. 

Due to the BET pharmacology that could prove so important in treating human diseases, 
obtaining excellent selectivity over this family is critical for the elucidation of non-BET 
bromodomain pharmacology with chemical probes.  To date, the studies conducted with the 
non-BET bromodomain chemical probes discussed have implicated these proteins in cancer, 
inflammation, embryonic development and neurological disorders. Furthermore, the 
patenting of compounds which inhibit some of these proteins highlights the investment in this 
area and the potential for new and innovative medicines for the treatment of human disease.  
However, the bromodomains discussed represent a fraction of the phylogenetic tree and 
there is still a large amount of work to understand the pharmacology of all of them.  During 
the preparation of this manuscript, one aspect that particularly stood out is the collaborative 
nature of the vast majority of the disclosures around non-BET bromodomain chemical 
probes, perhaps indicating that such collaborations are an excellent method to achieve this 
goal. 
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