154 research outputs found

    Honing the in silico

    Get PDF

    FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded

    Get PDF
    An easy-to-use, versatile and freely available graphic web server, FoldIndex is described: it predicts if a given protein sequence is intrinsically unfolded implementing the algorithm of Uversky and co-workers, which is based on the average residue hydrophobicity and net charge of the sequence. FoldIndex has an error rate comparable to that of more sophisticated fold prediction methods. Sliding windows permit identification of large regions within a protein that possess folding propensities different from those of the whole protein

    Making the invisible enemy visible.

    Get PDF
    Structural biology plays a crucial role in the fight against COVID-19, permitting us to ‘see’ and understand SARS-CoV-2. However, the macromolecular structures of SARS-CoV-2 proteins that were solved with great speed and urgency can contain errors that may hinder drug design. The Coronavirus Structural Task Force has been working behind the scenes to evaluate and improve these structures, making the results freely available at https://insidecorona.net/

    Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway

    Get PDF
    The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred - E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions. © 2013 Bhowmick et al

    Capturing, sharing and analysing biophysical data from protein engineering and protein characterization studies

    Get PDF
    Large amounts of data are being generated annually on the connection between the sequence, structure and function of proteins using site-directed mutagenesis, protein design and directed evolution techniques. These data provide the fundamental building blocks for our understanding of protein function, molecular biology and living organisms in general. However, much experimental data are never deposited in databases and is thus ‘lost’ in journal publications or in PhD theses. At the same time theoretical scientists are in need of large amounts of experimental data for benchmarking and calibrating novel predictive algorithms, and theoretical progress is therefore often hampered by the lack of suitable data to validate or disprove a theoretical assumption. We present PEAT (Protein Engineering Analysis Tool), an application that integrates data deposition, storage and analysis for researchers carrying out protein engineering projects or biophysical characterization of proteins. PEAT contains modules for DNA sequence manipulation, primer design, fitting of biophysical characterization data (enzyme kinetics, circular dichroism spectroscopy, NMR titration data, etc.), and facilitates sharing of experimental data and analyses for a typical university-based research group. PEAT is freely available to academic researchers at http://enzyme.ucd.ie/PEAT

    Allosteric Modulators of Steroid Hormone Receptors : Structural Dynamics and Gene Regulation

    Get PDF
    Peer reviewedPublisher PD

    A microscale protein NMR sample screening pipeline

    Get PDF
    As part of efforts to develop improved methods for NMR protein sample preparation and structure determination, the Northeast Structural Genomics Consortium (NESG) has implemented an NMR screening pipeline for protein target selection, construct optimization, and buffer optimization, incorporating efficient microscale NMR screening of proteins using a micro-cryoprobe. The process is feasible because the newest generation probe requires only small amounts of protein, typically 30–200 μg in 8–35 μl volume. Extensive automation has been made possible by the combination of database tools, mechanization of key process steps, and the use of a micro-cryoprobe that gives excellent data while requiring little optimization and manual setup. In this perspective, we describe the overall process used by the NESG for screening NMR samples as part of a sample optimization process, assessing optimal construct design and solution conditions, as well as for determining protein rotational correlation times in order to assess protein oligomerization states. Database infrastructure has been developed to allow for flexible implementation of new screening protocols and harvesting of the resulting output. The NESG micro NMR screening pipeline has also been used for detergent screening of membrane proteins. Descriptions of the individual steps in the NESG NMR sample design, production, and screening pipeline are presented in the format of a standard operating procedure

    PDBe-KB: collaboratively defining the biological context of structural data

    Get PDF
    The Protein Data Bank in Europe - Knowledge Base (PDBe-KB, https://pdbe-kb.org) is an open collaboration between world-leading specialist data resources contributing functional and biophysical annotations derived from or relevant to the Protein Data Bank (PDB). The goal of PDBe-KB is to place macromolecular structure data in their biological context by developing standardised data exchange formats and integrating functional annotations from the contributing partner resources into a knowledge graph that can provide valuable biological insights. Since we described PDBe-KB in 2019, there have been significant improvements in the variety of available annotation data sets and user functionality. Here, we provide an overview of the consortium, highlighting the addition of annotations such as predicted covalent binders, phosphorylation sites, effects of mutations on the protein structure and energetic local frustration. In addition, we describe a library of reusable web-based visualisation components and introduce new features such as a bulk download data service and a novel superposition service that generates clusters of superposed protein chains weekly for the whole PDB archive

    Predicting mostly disordered proteins by using structure-unknown protein data

    Get PDF
    BACKGROUND: Predicting intrinsically disordered proteins is important in structural biology because they are thought to carry out various cellular functions even though they have no stable three-dimensional structure. We know the structures of far more ordered proteins than disordered proteins. The structural distribution of proteins in nature can therefore be inferred to differ from that of proteins whose structures have been determined experimentally. We know many more protein sequences than we do protein structures, and many of the known sequences can be expected to be those of disordered proteins. Thus it would be efficient to use the information of structure-unknown proteins in order to avoid training data sparseness. We propose a novel method for predicting which proteins are mostly disordered by using spectral graph transducer and training with a huge amount of structure-unknown sequences as well as structure-known sequences. RESULTS: When the proposed method was evaluated on data that included 82 disordered proteins and 526 ordered proteins, its sensitivity was 0.723 and its specificity was 0.977. It resulted in a Matthews correlation coefficient 0.202 points higher than that obtained using FoldIndex, 0.221 points higher than that obtained using the method based on plotting hydrophobicity against the number of contacts and 0.07 points higher than that obtained using support vector machines (SVMs). To examine robustness against training data sparseness, we investigated the correlation between two results obtained when the method was trained on different datasets and tested on the same dataset. The correlation coefficient for the proposed method is 0.14 higher than that for the method using SVMs. When the proposed SGT-based method was compared with four per-residue predictors (VL3, GlobPlot, DISOPRED2 and IUPred (long)), its sensitivity was 0.834 for disordered proteins, which is 0.052–0.523 higher than that of the per-residue predictors, and its specificity was 0.991 for ordered proteins, which is 0.036–0.153 higher than that of the per-residue predictors. The proposed method was also evaluated on data that included 417 partially disordered proteins. It predicted the frequency of disordered proteins to be 1.95% for the proteins with 5%–10% disordered sequences, 1.46% for the proteins with 10%–20% disordered sequences and 16.57% for proteins with 20%–40% disordered sequences. CONCLUSION: The proposed method, which utilizes the information of structure-unknown data, predicts disordered proteins more accurately than other methods and is less affected by training data sparseness
    corecore