445 research outputs found

    Electronic and structural study of Pt-modified Au vicinal surfaces: a model system for Pt–Au catalysts

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOTwo single crystalline surfaces of Au vicinal to the (111) plane were modified with Pt and studied using scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS) in ultra-high vacuum environment. The vicinal surfaces studied are Au(332) and Au(887) and different Pt coverage (θPt) were deposited on each surface. From STM images we determine that Pt deposits on both surfaces as nanoislands with heights ranging from 1 ML to 3 ML depending on θPt. On both surfaces the early growth of Pt ad-islands occurs at the lower part of the step edge, with Pt ad-atoms being incorporated into the steps in some cases. XPS results indicate that partial alloying of Pt occurs at the interface at room temperature and at all coverage, as suggested by the negative chemical shift of Pt 4f core line, indicating an upward shift of the d-band center of the alloyed Pt. Also, the existence of a segregated Pt phase especially at higher coverage is detected by XPS. Sample annealing indicates that the temperature rise promotes a further incorporation of Pt atoms into the Au substrate as supported by STM and XPS results. Additionally, the catalytic activity of different PtAu systems reported in the literature for some electrochemical reactions is discussed considering our findings. © 2014 The Owner Societies.Two single crystalline surfaces of Au vicinal to the (111) plane were modified with Pt and studied using scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS) in ultra-high vacuum environment. The vicinal surfaces studied are Au(332) and Au(887) and different Pt coverage (yPt) were deposited on each surface. From STM images we determine that Pt deposits on both surfaces as nanoislands with heights ranging from 1 ML to 3 ML depending on yPt. On both surfaces the early growth of Pt ad-islands occurs at the lower part of the step edge, with Pt ad-atoms being incorporated into the steps in some cases. XPS results indicate that partial alloying of Pt occurs at the interface at room temperature and at all coverage, as suggested by the negative chemical shift of Pt 4f core line, indicating an upward shift of the d-band center of the alloyed Pt. Also, the existence of a segregated Pt phase especially at higher coverage is detected by XPS. Sample annealing indicates that the temperature rise promotes a further incorporation of Pt atoms into the Au substrate as supported by STM and XPS results. Additionally, the catalytic activity of different PtAu systems reported in the literature for some electrochemical reactions is discussed considering our findings.Two single crystalline surfaces of Au vicinal to the (111) plane were modified with Pt and studied using scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS) in ultra-high vacuum environment. The vicinal surfaces studied are Au(332) and Au(887) and different Pt coverage (yPt) were deposited on each surface. From STM images we determine that Pt deposits on both surfaces as nanoislands with heights ranging from 1 ML to 3 ML depending on yPt. On both surfaces the early growth of Pt ad-islands occurs at the lower part of the step edge, with Pt ad-atoms being incorporated into the steps in some cases. XPS results indicate that partial alloying of Pt occurs at the interface at room temperature and at all coverage, as suggested by the negative chemical shift of Pt 4f core line, indicating an upward shift of the d-band center of the alloyed Pt. Also, the existence of a segregated Pt phase especially at higher coverage is detected by XPS. Sample annealing indicates that the temperature rise promotes a further incorporation of Pt atoms into the Au substrate as supported by STM and XPS results. Additionally, the catalytic activity of different PtAu systems reported in the literature for some electrochemical reactions is discussed considering our findings.16261332913339FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO07/54829-5; 2011/12.566-3; 2012/16860-6160172/2011-0Greeley, J., Stephens, I.E.L., Bondarenko, A.S., Johansson, T.P., Hansen, H.A., Jaramillo, T.F., Rossmeisl, J., Nørskov, J.K., (2009) Nat. Chem., 1, pp. 552-556Wu, G., More, K.L., Johnston, C.M., Zelenay, P., (2011) Science, 332, pp. 443-447Chu, Y.H., Shul, Y.G., (2010) Int. J. Hydrogen Energy, 35, pp. 11261-11270Kowal, A., Li, M., Shao, M., Sasaki, K., Vukmirovic, M.B., Zhang, J., Marinkovic, N.S., Adzic, R.R., (2009) Nat. Mater., 8, pp. 325-330Xu, C.W., Su, Y.Z., Tan, L.L., Liu, Z.L., Zhang, J.H., Chen, S.A., Jiang, S.P., (2009) Electrochim. Acta, 54, pp. 6322-6326Colmati, F., Antolini, E., Gonzalez, E.R., (2008) J. Alloys Compd., 456, pp. 264-270Antolini, E., (2007) J. Power Sources, 170, pp. 1-12Colmati, F., Antolini, E., Gonzalez, E.R., (2006) J. Power Sources, 157, pp. 98-103Stamenkovic, V.R., Mun, B.S., Mayrhofer, K.J.J., Ross, P.N., Markovic, N.M., (2006) J. Am. Chem. Soc., 128, pp. 8813-8819Freund, H.-J., Pacchioni, G., (2008) Chem. Soc. Rev., 37, pp. 2224-2242Kim, Y., Kim, H.J., Kim, Y.S., Choi, S.M., Seo, M.H., Kim, W.B., (2012) J. Phys. Chem. C, 116, pp. 18093-18100Kwon, Y., Birdja, Y., Spanos, I., Rodriguez, P., Koper, M.T.M., (2012) ACS Catal., 2, pp. 759-764Freitas, R.G., Pereira, E.C., (2010) Electrochim. Acta, 55, pp. 7622-7627Colmati, F., Tremiliosi, G., Gonzalez, E.R., Berna, A., Herrero, E., Feliu, J.M., (2009) Phys. Chem. Chem. Phys., 11, pp. 9114-9123Repain, V., Baudot, G., Ellmer, H., Rousset, S., (2002) Europhys. Lett., 58, p. 730Repain, V., Berroir, J.M., Rousset, S., Lecoeur, J., (1999) Europhys. Lett., 47, p. 435Nahas, Y., Repain, V., Chacon, C., Girard, Y., Rousset, S., (2010) Surf. Sci., 604, pp. 829-833Rohart, S., Girard, Y., Nahas, Y., Repain, V., Rodary, G., Tejeda, A., Rousset, S., (2008) Surf. Sci., 602, pp. 28-36Rohart, S., Baudot, G., Repain, V., Girard, Y., Rousset, S., Bulou, H., Goyhenex, C., Proville, L., (2004) Surf. Sci., 559, pp. 47-62Axel, G., (2009) J. Phys.: Condens. Matter, 21, p. 084205Rodriguez, J., (1996) Surf. Sci. Rep., 24, pp. 223-287Eyrich, M., Diemant, T., Hartmann, H., Bansmann, J., Behm, R.J., (2012) J. Phys. Chem. C, 116, pp. 11154-11165Bowker, M., (1995) Chem. Vap. Deposition, 1, p. 90Xu, J.B., Zhao, T.S., Yang, W.W., Shen, S.Y., (2010) Int. J. Hydrogen Energy, 35, pp. 8699-8706Wang, J., Yin, G., Wang, G., Wang, Z., Gao, Y., (2008) Electrochem. Commun., 10, pp. 831-834Horcas, I., Fernandez, R., Gomez-Rodriguez, J.M., Colchero, J., Gomez-Herrero, J., Baro, A.M., (2007) Rev. Sci. Instrum., 78, pp. 013705-013708Doniach, S., Sunjic, M., (1970) J. Phys. C: Solid State Phys., 3, p. 285Hörnström, S.E., Johansson, L., Flodström, A., Nyholm, R., Schmidt-May, J., (1985) Surf. Sci., 160, pp. 561-570Shevchik, N.J., (1974) Phys. Rev. Lett., 33, p. 1336Powell, C.J., (2012) J. Electron Spectrosc. Relat. Phenom., 185, pp. 1-3Rousset, S., Repain, V., Baudot, G., Garreau, Y., Lecoeur, J., (2003) J. Phys.: Condens. Matter, 15, p. 3363Prévot, G., Girard, Y., Repain, V., Rousset, S., Coati, A., Garreau, Y., Paul, J., Narasimhan, S., (2010) Phys. Rev. B: Condens. Matter Mater. Phys., 81, p. 075415Repain, V., Rohart, S., Girard, Y., Tejeda, A., Rousset, S., (2006) J. Phys.: Condens. Matter, 18, p. 17Repain, V., Baudot, G., Ellmer, H., Rousset, S., (2002) Mater. Sci. Eng., B, 96, pp. 178-187Repain, V., Berroir, J.M., Rousset, S., Lecoeur, J., (2000) Surf. Sci., 447, pp. 152-L156Campiglio, P., Repain, V., Chacon, C., Fruchart, O., Lagoute, J., Girard, Y., Rousset, S., (2011) Surf. Sci., 605, pp. 1165-1169Prieto, M.J., Carbonio, E.A., Landers, R., De Siervo, A., (2013) Surf. Sci., 617, pp. 87-93Antczak, G., Ehrlich, G., (2010) Surface Diffusion: Metals, Metal Atoms, and Clusters, , Cambridge Univesrity Press, New YorkKim, S.Y., Lee, I.-H., Jun, S., (2007) Phys. Rev. B: Condens. Matter Mater. Phys., 76, p. 245407Liu, Y.B., Sun, D.Y., Gong, X.G., (2002) Surf. Sci., 498, pp. 337-342Prévot, G., Barbier, L., Steadman, P., (2010) Surf. Sci., 604, pp. 1265-1272Pedersen M.Ø, Helveg, S., Ruban, A., Stensgaard, I., Lægsgaard, E., Nørskov, J.K., Besenbacher, F., (1999) Surf. Sci., 426, pp. 395-409Gohda, Y., Groß, A., (2007) Surf. Sci., 601, pp. 3702-3706Pastor, E., Rodriguez, J.L., Iwasita, T., (2002) Electrochem. Commun., 4, pp. 959-962Keister, J.K., Rowe, J.E., Kolodziej, J.J., Madey, T.E., (2000) J. Vac. Sci. Tech. B, 18, pp. 2174-2178. , 10.1116/1.1305872Martin, R., Gardner, P., Bradshaw, A.M., (1995) Surf. Sci., 342, pp. 69-84Bare, S.R., Hofmann, P., King, D.A., (1984) Surf. Sci., 144, pp. 347-369Yamagishi, S., Fujimoto, T., Inada, Y., Orita, H., (2005) J. Phys. Chem. B, 109, pp. 8899-8908Watanabe, S., Inukai, J., Ito, M., (1993) Surf. Sci., 293, pp. 1-9Sarkar, A., Kerr, J.B., Cairns, E.J., (2013) ChemPhysChem, 14, pp. 2132-2142Du, B., Zaluzhna, O., Tong, Y.J., (2011) Phys. Chem. Chem. Phys., 13, pp. 11568-11574Auten, B.J., Lang, H., Chandler, B.D., (2008) Appl. Catal., B, 81, pp. 225-235Gohda, Y., Groß, A., (2007) J. Electroanal. Chem., 607, pp. 47-53Kobiela, T., Moors, M., Linhart, W., Cebula, I., Krupski, A., Becker, C., Wandelt, K., (2010) Thin Solid Films, 518, pp. 3650-3657Petkov, V., Wanjala, B.N., Loukrakpam, R., Luo, J., Yang, L., Zhong, C.-J., Shastri, S., (2012) Nano Lett., 12, pp. 4289-4299Authors thank Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP-07/54829-5) and Conselho Nacional de Pesquisa (CNPq) for financial support. Specially thank to L. H. Lima for experimental assistance with STM measurements and Prof. G. Tremiliosi-Filho for lending the Au(332) crystal. MJP, SF and EAC thank FAPESP and CNPq for the fellowships granted (Procs. FAPESP 2011/12.566-3 and 2012/16860-6; Proc. CNPq 160172/2011-0)

    Self-assembly Of Nitpp On Cu(111): A Transition From Disordered 1d Wires To 2d Chiral Domains.

    Get PDF
    The growth and self-assembling properties of nickel-tetraphenyl porphyrins (NiTPP) on the Cu(111) surface are analysed via scanning tunnelling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT). For low coverage, STM results show that NiTPP molecules diffuse on the terrace until they reach the step edge of the copper surface forming a 1D system with disordered orientation along the step edges. The nucleation process into a 2D superstructure was observed to occur via the interaction of molecules attached to the already nucleated 1D structure, reorienting molecules. For monolayer range coverage a 2D nearly squared self-assembled array with the emergence of chiral domains was observed. The XPS results of the Ni 2p(3/2) core levels exhibit a 2.6 eV chemical shift between the mono- and multilayer configuration of NiTPP. DFT calculations show that the observed chemical shifts of Ni 2p(3/2) occur due to the interaction of 3d orbitals of Ni with the Cu(111) substrate.1718344-1835

    The ethanol electrooxidation at Pt layers deposited on polycrystalline Au

    Get PDF
    The ethanol electro-oxidation reaction was evaluated using a polycrystalline Au substrate modified with two different amounts of Pt using the galvanic exchange methodology. FTIR results suggest that Pt deposits have a greater ability to break the C-C bond present in the ethanol molecule. However, under potentiostatic conditions both modified Au surfaces undergo faster deactivation in comparison with polycrystalline platinum as indicated by the chronoamperometric results. XPS results indicate the presence of two phases depending on the Pt content. These are: (i) Pt-Au alloy and (ii) segregated Pt. The structural and electronic properties of these phases were related to the differences observed in the catalytic activity.Conselho Nacional de Pesquisa (CNPq) [Proc. 142507/2007-5]Conselho Nacional de Pesquisa (CNPq)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP

    Low-Temperature Growth of Graphene on a Semiconductor

    Get PDF
    The industrial realization of graphene has so far been limited by challenges related to the quality, reproducibility, and high process temperatures required to manufacture graphene on suitable substrates. We demonstrate that epitaxial graphene can be grown on transition metal treated 6H-SiC(0001) surfaces, with an onset of graphitization starting around 450500C450-500^\circ\text{C}. From the chemical reaction between SiC and thin films of Fe or Ru, sp3\text{sp}^{3} carbon is liberated from the SiC crystal and converted to sp2\text{sp}^{2} carbon at the surface. The quality of the graphene is demonstrated using angle-resolved photoemission spectroscopy and low-energy electron diffraction. Furthermore, the orientation and placement of the graphene layers relative to the SiC substrate is verified using angle-resolved absorption spectroscopy and energy-dependent photoelectron spectroscopy, respectively. With subsequent thermal treatments to higher temperatures, a steerable diffusion of the metal layers into the bulk SiC is achieved. The result is graphene supported on magnetic silicide or optionally, directly on semiconductor, at temperatures ideal for further large-scale processing into graphene based device structures.Comment: 10 pages, 4 figures, 51 reference

    A Simplified Method for Patterning Graphene on Dielectric Layers

    Get PDF
    The large-scale formation of patterned, quasi-freestanding graphene structures supported on a dielectric has so far been limited by the need to transfer the graphene onto a suitable substrate and contamination from the associated processing steps. We report μm scale, few-layer graphene structures formed at moderate temperatures (600–700 °C) and supported directly on an interfacial dielectric formed by oxidizing Si layers at the graphene/substrate interface. We show that the thickness of this underlying dielectric support can be tailored further by an additional Si intercalation of the graphene prior to oxidation. This produces quasi-freestanding, patterned graphene on dielectric SiO2 with a tunable thickness on demand, thus facilitating a new pathway to integrated graphene microelectronics

    Loss of anti-contractile effect of perivascular adipose tissue in offspring of obese rats

    Get PDF
    RATIONALE: Maternal obesity pre-programmes offspring to develop obesity and associated cardiovascular disease. Perivascular adipose tissue (PVAT) exerts an anti-contractile effect on the vasculature, which is reduced in hypertension and obesity. OBJECTIVE: The objective of this study was to determine whether maternal obesity pre-programmes offspring to develop PVAT dysfunction in later life. METHODS: Female Sprague–Dawley rats were fed a diet containing 10% (control) or 45% fat (high fat diet, HFD) for 12 weeks prior to mating and during pregnancy and lactation. Male offspring were killed at 12 or 24 weeks of age and tension in PVAT-intact or -denuded mesenteric artery segments was measured isometrically. Concentration–response curves were constructed to U46619 and norepinephrine. RESULTS: Only 24-week-old HFD offspring were hypertensive (P<0.0001), although the anti-contractile effect of PVAT was lost in vessels from HFD offspring of each age. Inhibition of nitric oxide (NO) synthase with 100 μM l-NMMA attenuated the anti-contractile effect of PVAT and increased contractility of PVAT-denuded arteries (P<0.05, P<0.0001). The increase in contraction was smaller in PVAT-intact than PVAT-denuded vessels from 12-week-old HFD offspring, suggesting decreased PVAT-derived NO and release of a contractile factor (P<0.07). An additional, NO-independent effect of PVAT was evident only in norepinephrine-contracted vessels. Activation of AMP-activated kinase (with 10 μM A769662) was anti-contractile in PVAT-denuded (P<0.0001) and -intact (P<0.01) vessels and was due solely to NO in controls; the AMPK effect was similar in HFD offspring vessels (P<0.001 and P<0.01, respectively) but was partially NO-independent. CONCLUSIONS: The diminished anti-contractile effects of PVAT in offspring of HFD dams are primarily due to release of a PVAT-derived contractile factor and reduced NO bioavailability

    Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    Get PDF
    Superparamagnetic iron oxide nanoparticles can providemultiple benefits for biomedical applications in aqueous environments such asmagnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.status: publishe

    Observation of the Decay Λ0b→Λ+cτ−¯ν

    Get PDF
    The first observation of the semileptonic b-baryon decay Λb0→Λc+τ-ν¯τ, with a significance of 6.1σ, is reported using a data sample corresponding to 3 fb-1 of integrated luminosity, collected by the LHCb experiment at center-of-mass energies of 7 and 8 TeV at the LHC. The τ- lepton is reconstructed in the hadronic decay to three charged pions. The ratio K=B(Λb0→Λc+τ-ν¯τ)/B(Λb0→Λc+π-π+π-) is measured to be 2.46±0.27±0.40, where the first uncertainty is statistical and the second systematic. The branching fraction B(Λb0→Λc+τ-ν¯τ)=(1.50±0.16±0.25±0.23)% is obtained, where the third uncertainty is from the external branching fraction of the normalization channel Λb0→Λc+π-π+π-. The ratio of semileptonic branching fractions R(Λc+)B(Λb0→Λc+τ-ν¯τ)/B(Λb0→Λc+μ-ν¯μ) is derived to be 0.242±0.026±0.040±0.059, where the external branching fraction uncertainty from the channel Λb0→Λc+μ-ν¯μ contributes to the last term. This result is in agreement with the standard model prediction
    corecore