554 research outputs found

    An exploration of perceptions of learning and e-learning held by students who withdraw and those who persist with UK higher education

    Get PDF
    This paper discusses the relationships that first-year students have with learning and with technology. Due to the lack of previous work linking e-learning with student retention, differences between ‘withdrawers’ and ‘persisters’ were explored. Data were collected using interviews and questionnaires and analysed using thematic analysis. Evidence of a deficit approach to e-learning appears to manifest itself in both groups and technologies that promote social interaction were primarily reserved for personal use rather than within an institutional context. Recommendations from this research include the need to learn how technologies promoting social interaction are used and incorporate lessons learnt into the design of e-learning experiences

    On the macroion virial contribution to the osmotic pressure in charge-stabilized colloidal suspensions

    Full text link
    Our interest goes to the different virial contributions to the equation of state of charged colloidal suspensions. Neglect of surface effects in the computation of the colloidal virial term leads to spurious and paradoxical results. This pitfall is one of the several facets of the danger of a naive implementation of the so called One Component Model, where the micro-ionic degrees of freedom are integrated out to only keep in the description the mesoscopic (colloidal) degrees of freedom. On the other hand, due incorporation of wall induced forces dissolves the paradox brought forth in the naive approach, provides a consistent description, and confirms that for salt-free systems, the colloidal contribution to the pressure is dominated by the micro-ionic one. Much emphasis is put on the no salt case but the situation with added electrolyte is also discussed

    Open Data as Open Educational Resources: Towards transversal skills and global citizenship

    Get PDF
    Open Data is the name given to datasets which have been generated by international organisations, governments, NGOs and academic researchers, and made freely available online and openly-licensed. These datasets can be used by educators as Open Educational Resources (OER) to support different teaching and learning activities, allowing students to gain experience working with the same raw data researchers and policy-makers generate and use. In this way, educators can facilitate students to understand how information is generated, processed, analysed and interpreted. This paper offers an initial exploration of ways in which the use of Open Data can be key in the development of transversal skills (including digital and data literacies, alongside skills for critical thinking, research, teamwork, and global citizenship), enhancing students’ abilities to understand and select information sources, to work with, curate, analyse and interpret data, and to conduct and evaluate research. This paper also presents results of an exploratory survey that can guide further research into Open Data-led learning activities. Our goal is to support educators in empowering students to engage, critically and collaboratively, as 21st century global citizens

    Geographies of Access: Mapping the Online Attention to Digital Humanities Articles in Academic Journals

    Get PDF
    This poster aims to provide some answers in order to provide recommendations and best practices that might help democratise and increase the international access to peer-reviewed digital humanities research

    Opening teaching landscapes: The importance of quality assurance in the delivery of open educational resources

    Get PDF
    Scholars are increasingly being asked to share teaching materials, publish in open access journals, network in social media, and reuse open educational resources (OER). The theoretical benefits of Open Educational Practices (OEP) have become understood in the academic community but thus far, the use of OER has not been rapidly adopted. We aim to understand the challenges academics face with in attempting to adopt OEP, and identify whether these are related to or stem from the functionalities afforded by current repositories of OER (ROER). By understanding what academics and experts consider good practices, we can develop guidelines for quality in the development of ROER. In this article we present the findings from a study surveying academics using OER and experts who develop and/or work with ROER. We conclude by suggesting a framework to enhance the development and quality of ROER

    Simulation of the formation of craters in LENR cathode materials

    Get PDF
    Abstract only.Many electrochemical Low Energy Nuclear Reactions (LENR) experiments have resulted in the observations of micro-craters in the surfaces of the cathode metals (Pd, Au and others). Such craters are not known to form in ordinary electrochemical experiments, that is, without the possibility of LENR. Small craters are of interest for scientific reasons. They indicate the fast and local (high power density) release of energy, much faster than can be captured by calorimeters. Knowing crater formation dynamics might contribute to the understanding of LENR, and also constrain theories about mechanisms and locations of LENR. Cratering might also be practically important, since is erodes the cathode material. No way is known to measure directly the dynamics of crater formation to determine the formation (energy release) time, a key parameter scientifically. Hence, we are using simulations to attempt to learn about the energy production time, the amount of energy liberated, and both the shape and the location of the volume into which energy is released by LENR. There are several commercial software packages, which might be used for the simulations, including ANSYS, ComSol and SolidWorks. We are employing SolidWorks, which permits the initialization of the simulation by designating the cathode material, the release time and total energy, and the geometry of the problem. All of these factors can be varied parametrically in an attempt to produce post-simulation structures similar to those seen in micrographs after LENR experiments. The simulations yield both temporal and spatial distributions of the temperatures that follow from the LENR energy release. We will present the results of simulations of energy releases of 1 nJ to 1 mJ in times from less than 1 nsec to greater than 10 [mu]sec, with a wide range of geometries for the energized volume and its depth below the surface. Estimates of the energy release time and depths are expected to result from the simulation results and their comparisons with experimental micrographs

    Testing the relevance of effective interaction potentials between highly charged colloids in suspension

    Full text link
    Combining cell and Jellium model mean-field approaches, Monte Carlo together with integral equation techniques, and finally more demanding many-colloid mean-field computations, we investigate the thermodynamic behavior, pressure and compressibility of highly charged colloidal dispersions, and at a more microscopic level, the force distribution acting on the colloids. The Kirkwood-Buff identity provides a useful probe to challenge the self-consistency of an approximate effective screened Coulomb (Yukawa) potential between colloids. Two effective parameter models are put to the test: cell against renormalized Jellium models

    An Approach for the Customized High-Dimensional Segmentation of Remote Sensing Hyperspectral Images

    Get PDF
    Abstract: This paper addresses three problems in the field of hyperspectral image segmentation: the fact that the way an image must be segmented is related to what the user requires and the application; the lack and cost of appropriately labeled reference images; and, finally, the information loss problem that arises in many algorithms when high dimensional images are projected onto lower dimensional spaces before starting the segmentation process. To address these issues, the Multi-Gradient based Cellular Automaton (MGCA) structure is proposed to segment multidimensional images without projecting them to lower dimensional spaces. The MGCA structure is coupled with an evolutionary algorithm (ECAS-II) in order to produce the transition rule sets required by MGCA segmenters. These sets are customized to specific segmentation needs as a function of a set of low dimensional training images in which the user expresses his segmentation requirements. Constructing high dimensional image segmenters from low dimensional training sets alleviates the problem of lack of labeled training images. These can be generated online based on a parametrization of the desired segmentation extracted from a set of examples. The strategy has been tested in experiments carried out using synthetic and real hyperspectral images, and it has been compared to state-of-the-art segmentation approaches over benchmark images in the area of remote sensing hyperspectral imaging.Ministerio de EconomĂ­a y competitividad; TIN2015-63646-C5-1-RMinisterio de EconomĂ­a y competitividad; RTI2018-101114-B-I00Xunta de Galicia: ED431C 2017/1
    • 

    corecore