70 research outputs found

    Deglaciation records of 17O-excess in East Antarctica: reliable reconstruction of oceanic normalized relative humidity from coastal sites

    Get PDF
    We measured 17O and 18O in two Antarctic ice cores at EPICA Dome C (EDC) and TALDICE (TD), respectively, and computed 17O-excess with respect to VSMOW. The comparison of our 17O-excess data with the previous record obtained at Vostok (Landais et al., 2008a) revealed differences up to 35 ppm in 17O-excess mean level and evolution for the three sites. Our data show that the large increase depicted at Vostok (20 ppm) during the last deglaciation is a regional and not a general pattern in the temporal distribution of 17O-excess in East Antarctica. The EDC data display an increase of 12 ppm, whereas the TD data show no significant variation from the Last Glacial Maximum (LGM) to the Early Holocene (EH). A Lagrangian moisture source diagnostic revealed very different source regions for Vostok and EDC compared to TD. These findings combined with the results of a sensitivity analysis, using a Rayleigh-type isotopic model, suggest that normalized relative humidity (RHn) at the oceanic source region (OSR) is a determining factor for the spatial differences of 17O-excess in East Antarctica. However, 17O-excess in remote sites of continental Antarctica (e.g. Vostok) may be highly sensitive to local effects. Hence, we consider 17O-excess in coastal East Antarctic ice cores (TD) to be more reliable as a proxy for RHn at the OSR

    What controls the isotopic composition of Greenland surface snow?

    Get PDF
    International audienceWater stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically enabled atmospheric models. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, monitoring of the isotopic composition (d18O, dD) of near-surface water vapor, precipitation and samples of the top (0.5 cm) snow surface has been conducted during two summers (2011-2012) at NEEM, NW Greenland. The samples also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between near-surface vapor d18O and air temperature (0.85 ± 0.11‰ °C-1 (R = 0.76) for 2012). The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess) is strongly anti-correlated with d18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1-5-day periods between precipitation events, our data demonstrate parallel changes of d18O and d-excess in surface snow and near-surface vapor. The changes in d18O of the vapor are similar or larger than those of the snow d18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near-surface vapor isotopic composition. This is consistent with an estimated 60% mass turnover of surface snow per day driven by snow recrystallization processes under NEEM summer surface snow temperature gradients. Our findings have implications for ice core data interpretation and model-data comparisons, and call for further process studies. © Author(s) 2014

    Captive breeding of Margaritifera auricularia (Spengler, 1793) and its conservation importance

    Get PDF
    Margaritifera auricularia is one of the most endangered freshwater mussels (Bivalvia, Unionida) in the world. Since 2013, the abundance of this species in the Ebro River basin (Spain) has sharply declined, driving the species to the verge of regional extinction. Therefore, any management measures that might facilitate the recovery of this species would be essential for its conservation. During 2014–2016, captive breeding of M. auricularia allowed the production of >106 juveniles, out of which 95% were released into the natural environment, and 5% were grown in the laboratory under controlled conditions. The aim of this experimental work was to establish the best culture conditions for the survival and growth of M. auricularia juveniles in the laboratory. The experiment was divided into two phases: phase I, in which juveniles recently detached from fish gills were cultured in detritus boxes until they reached a shell length of 1 mm; and phase II, in which these specimens were transferred to larger aquaria to grow up to 3–4 mm. The best experimental conditions for juvenile survival and growth corresponded to treatments in glass containers at a density of 0.2 ind. L−1, using river water, with added substrate and detritus, enriched with phytoplankton, and avoiding extra aeration. The highest survival and growth rates attained, respectively, values of c. 60% at 100 days and 2.56 mm in shell length at 30–32 weeks. This is the first study to report on the long‐term survival and growth of juvenile M. auricularia in the laboratory, providing essential information in order to implement future conservation measures addressed at reinforcing the natural populations of this highly threatened species in European water bodies.This project was funded by the Government of Aragón, Department of Rural Development and Sustainability and carried out by the Environmental Service Department of SARGA. Special thanks go to Manuel Alcántara, Miguel Ángel Muñoz, Ester Ginés, Carlos Catalá, and Juan Pablo de la Roche, who were involved in the project. The authors appreciate the work of the reviewer and editor who improved the quality of the manuscript. The Aragón's forest rangers are thanked for their assistance during fieldwork

    Functional Interaction between CFTR and the Sodium-Phosphate Co-Transport Type 2a in Xenopus laevis Oocytes

    Get PDF
    A growing number of proteins, including ion transporters, have been shown to interact with Cystic Fibrosis Transmembrane conductance Regulator (CFTR). CFTR is an epithelial chloride channel that is involved in Cystic Fibrosis (CF) when mutated; thus a better knowledge of its functional interactome may help to understand the pathophysiology of this complex disease. In the present study, we investigated if CFTR and the sodium-phosphate co-transporter type 2a (NPT2a) functionally interact after heterologous expression of both proteins in Xenopus laevis oocytes.NPT2a was expressed alone or in combination with CFTR in X. laevis oocytes. Using the two-electrode voltage-clamp technique, the inorganic phosphate-induced current (IPi) was measured and taken as an index of NPT2a activity. The maximal IPi for NPT2a substrates was reduced when CFTR was co-expressed with NPT2a, suggesting a decrease in its expression at the oolemna. This was consistent with Western blot analysis showing reduced NPT2a plasma membrane expression in oocytes co-expressing both proteins, whereas NPT2a protein level in total cell lysate was the same in NPT2a- and NPT2a+CFTR-oocytes. In NPT2a+CFTR- but not in NPT2a-oocytes, IPi and NPT2a surface expression were increased upon PKA stimulation, whereas stimulation of Exchange Protein directly Activated by cAMP (EPAC) had no effect. When NPT2a-oocytes were injected with NEG2, a short amino-acid sequence from the CFTR regulatory domain that regulates PKA-dependent CFTR trafficking to the plasma membrane, IPi values and NPT2a membrane expression were diminished, and could be enhanced by PKA stimulation, thereby mimicking the effects of CFTR co-expression.We conclude that when both CFTR and NPT2a are expressed in X. laevis oocytes, CFTR confers to NPT2a a cAMPi-dependent trafficking to the membrane. This functional interaction raises the hypothesis that CFTR may play a role in phosphate homeostasis

    The ST22 chronology for the Skytrain Ice Rise ice core – Part 2: An age model to the last interglacial and disturbed deep stratigraphy

    Get PDF
    We present an age model for the 651 m deep ice core from Skytrain Ice Rise, situated inland of the Ronne Ice Shelf, Antarctica. The top 2000 years have previously been dated using age markers interpolated through annual layer counting. Below this, we align the Skytrain core to the AICC2012 age model using tie points in the ice and air phase, and we apply the Paleochrono program to obtain the best fit to the tie points and glaciological constraints. In the gas phase, ties are made using methane and, in critical sections, δ18Oair; in the ice phase ties are through 10Be across the Laschamps event and through ice chemistry related to long-range dust transport and deposition. This strategy provides a good outcome to about 108 ka (∼ 605 m). Beyond that there are signs of flow disturbance, with a section of ice probably repeated. Nonetheless values of CH4 and δ18Oair confirm that part of the last interglacial (LIG), from about 117–126 ka (617–627 m), is present and in chronological order. Below this there are clear signs of stratigraphic disturbance, with rapid oscillation of values in both the ice and gas phase at the base of the LIG section, below 628 m. Based on methane values, the warmest part of the LIG and the coldest part of the penultimate glacial are missing from our record. Ice below 631 m appears to be of age &gt; 150 ka.</p

    From atmospheric water isotopes measurement to firn core interpretation in Adélie Land: a case study for isotope-enabled atmospheric models in Antarctica

    Get PDF
    In a context of global warming and sea level rise acceleration, it is key to estimate the evolution of the atmospheric hydrological cycle and temperature in polar regions, which directly influence the surface mass balance of the Arctic and Antarctic ice sheets. Direct observations are available from satellite data for the last 40 years and a few weather data since the 1950s in Antarctica. One of the best ways to access longer records is to use climate proxies in firn or ice cores. The water isotopic composition in these cores is widely used to reconstruct past temperature variations. We need to progress in our understanding of the influence of the atmospheric hydrological cycle on the water isotopic composition of ice cores. First, we present a 2-year-long time series of vapor and precipitation isotopic composition measurement at Dumont d’Urville Station, in Adélie Land. We characterize diurnal variations of meteorological parameters (temperature, atmospheric water mixing ratio (hereafter humidity) and δ18O) for the different seasons and determine the evolution of key relationships (δ18O versus temperature or humidity) throughout the year: we find that the temperature vs. δ18O relationship is dependent on synoptic events dynamics in winter contrary to summer. Then, this data set is used to evaluate the atmospheric general circulation model ECHAM6-wiso (model version with embedded water stable isotopes) in a coastal region of Adélie Land where local conditions are controlled by strong katabatic winds which directly impact the isotopic signal. We show that a combination of continental (79 %) and oceanic (21 %) grid cells leads model outputs (temperature, humidity and δ18O) to nicely fit the observations, at different timescales (i.e., seasonal to synoptic). Therefore we demonstrate the added value of long-term water vapor isotopic composition records for model evaluation. Then, as a clear link is found between the isotopic composition of water vapor and precipitation, we assess how isotopic models can help interpret short firn cores. In fact, a virtual firn core built from ECHAM-wiso outputs explains much more of the variability observed in S1C1 isotopic record than a virtual firn core built from temperature only. Yet, deposition and post-deposition effects strongly affect the firn isotopic signal and probably account for most of the remaining misfits between archived firn signal and virtual firn core based on atmospheric modeling.</p

    The ST22 chronology for the Skytrain Ice Rise ice core – Part 2: An age model to the last interglacial and disturbed deep stratigraphy

    Get PDF
    We present an age model for the 651 m deep ice core from Skytrain Ice Rise, situated inland of the Ronne Ice Shelf, Antarctica. The top 2000 years have previously been dated using age markers interpolated through annual layer counting. Below this, we align the Skytrain core to the AICC2012 age model using tie points in the ice and air phase, and we apply the Paleochrono program to obtain the best fit to the tie points and glaciological constraints. In the gas phase, ties are made using methane and, in critical sections, δ18Oair; in the ice phase ties are through 10Be across the Laschamps event and through ice chemistry related to long-range dust transport and deposition. This strategy provides a good outcome to about 108 ka (∼ 605 m). Beyond that there are signs of flow disturbance, with a section of ice probably repeated. Nonetheless values of CH4 and δ18Oair confirm that part of the last interglacial (LIG), from about 117–126 ka (617–627 m), is present and in chronological order. Below this there are clear signs of stratigraphic disturbance, with rapid oscillation of values in both the ice and gas phase at the base of the LIG section, below 628 m. Based on methane values, the warmest part of the LIG and the coldest part of the penultimate glacial are missing from our record. Ice below 631 m appears to be of age > 150 ka

    Biology and conservation of freshwater bivalves : past, present and future perspectives

    Get PDF
    Freshwater bivalves have been highly threatened by human activities, and recently their global decline has been causing conservational and social concern. In this paper, we review the most important research events in freshwater bivalve biology calling attention to the main scientific achievements. A great bias exists in the research effort, with much more information available for bivalve species belonging to the Unionida in comparison to other groups. The same is true for the origin of these studies, since the publishing pattern does not always correspond to the hotspots of biodiversity but is concentrated in the northern hemisphere mainly in North America, Europe and Russia, with regions such as Africa and Southeast Asia being quite understudied. We also summarize information about past, present and future perspectives concerning the most important research topics that include taxonomy, systematics, anatomy, physiology, ecology and conservation of freshwater bivalves. Finally, we introduce the articles published in this Hydrobiologia special issue related with the International Meeting on Biology and Conservation of Freshwater Bivalves held in 2012 in Braganc¸a, Portugal.We would like to express our gratitude to our sponsors and institutions, especially to the Polytechnic Institute of Braganca for all the logistic support. We acknowledge all keynote speakers, authors, session chairpersons and especially to all attendees whose contributions were fundamental for the success of this meeting. We would also like to thank all referees of this special issue and to Koen Martens, Editor-in-Chief of Hydrobiologia, for all the valuable comments and suggestions. The chronogram was built with the help of the expert opinion of fellow colleagues Rafael Araujo, Arthur Bogan, Kevin Cummings, Dan Graf, Wendell Haag, Karl-Otto Nagel and David Strayer to whom we are very grateful. The authors acknowledge the support provided by Portuguese Foundation for Science and Technology (FCT) and COMPETE funds-projects CONBI (Contract: PTDC/AAC-AMB/117688/2010) and ECO-IAS (Contract: PTDC/AAC-AMB/116685/2010), and by the European Regional Development Fund (ERDF) through the COMPETE, under the project "PEst-C/MAR/LA0015/2011"

    Метод интегрирования дифференциальных уравнений динамики электрических машин с вращающимся ротором

    Get PDF
    Для исследования переходных процессов в электротехнических системах, содержащих статические электромагнитные устройства, включенные в сложные электрические схемы, разработан программный комплекс Colo, функционирующий на основе магнитоэлектрических схем замещения в матричной форме. Главная матрица комплекса Colo содержит коэффициенты при искомых токах или магнитных потоках. Моделирование динамических процессов в электрических машинах с вращающимся ротором связано с интегрированием дифференциальных уравнений, в которые входят произведения искомых величин, поэтому непосредственно эти уравнения не могут решаться в программном комплексе Colo

    The ever-expanding conundrum of primary osteoporosis: aetiopathogenesis, diagnosis, and treatment

    Full text link
    corecore