18 research outputs found

    A new classification of the long-horned caddisflies (Trichoptera: Leptoceridae) based on molecular data

    Get PDF
    Background: Leptoceridae are among the three largest families of Trichoptera (caddisflies). The current classification is founded on a phylogenetic work from the 1980's, based on morphological characters from adult males, i.e. wing venation, tibial spur formula and genital morphology. In order to get a new opinion about the relationships within the family, we undertook a molecular study of the family based on sequences from five genes, mitochondrial COI and the four nuclear genes CAD, EF-1 alpha, IDH and POL. Results: The resulting phylogenetic hypotheses are more or less congruent with the morphologically based classification, with most genera and tribes recovered as monophyletic, but with some major differences. For monophyly of the two subfamilies Triplectidinae and Leptocerinae, one tribe of each was removed and elevated to subfamily status; however monophyly of some genera and tribes is in question. All clades except Leptocerinae, were stable across different analysis methods. Conclusions: We elevate the tribes Grumichellini and Leptorussini to subfamily status, Grumichellinae and Leptorussinae, respectively. We also propose the synonymies of Ptochoecetis with Oecetis and Condocerus with Hudsonema.authorCount :

    Cuticular Compounds Bring New Insight in the Post-Glacial Recolonization of a Pyrenean Area: Deutonura deficiens Deharveng, 1979 Complex, a Case Study

    Get PDF
    Background: In most Arthropod groups, the study of systematics and evolution rely mostly on neutral characters, in this context cuticular compounds, as non-neutral characters, represent an underexplored but potentially informative type of characters at the infraspecific level as they have been routinely proven to be involved in sexual attraction. Methods and Findings: The collembolan species complex Deutonura deficiens was chosen as a model in order to test the utility of these characters for delineating four infraspecific entities of this group. Specimens were collected for three subspecies (D. d. deficiens, D. d. meridionalis, D. d. sylvatica) and two morphotypes (D. d. sylvatica morphoype A and B) of the complex; an additional species D. monticola was added. Cuticular compounds were extracted and separated by gas chromatography for each individual. Our results demonstrate that cuticular compounds succeeded in separating the different elements of this complex. Those data allowed also the reconstruction of the phylogenetic relationships among them. Conclusions: The discriminating power of cuticular compounds is directly related to their involvement in sexual attraction and mate recognition. These findings allowed a discussion on the potential involvement of intrinsic and paleoclimatic factors in the origin and the diversification of this complex in the Pyrenean zone. This character type brings the first advanc

    Piston-driven numerical wave tank based on WENO solver of well-balanced shallow water equations

    Get PDF
    A numerical wave tank equipped with a piston type wave-maker is presented for long-duration simulations of long waves in shallow water. Both wave maker and tank are modelled using the nonlinear shallow water equations, with motions of the numerical piston paddle accomplished via a linear mapping technique. Three approaches are used to increase computational efficiency and accuracy. First, the model satisfies the exact conservation property (C-property), a stepping stone towards properly balancing each term in the governing equation. Second, a high-order weighted essentially non-oscillatory (WENO) method is used to reduce accumulation of truncation error. Third, a cut-off algorithm is implemented to handle contaminated digits arising from round-off error. If not treated, such errors could prevent a numerical scheme from satisfying the exact C-property in long-duration simulations. Extensive numerical tests are performed to examine the well-balanced property, high order accuracy, and shock-capturing ability of the present scheme. Correct implementation of the wave paddle generator is verified by comparing numerical predictions against analytical solutions of sinusoidal, solitary, and cnoidal waves. In all cases, the model gives satisfactory results for small-amplitude, low frequency waves. Error analysis is used to investigate model limitations and derive a user criterion for long wave generation by the model

    Molecular phylogeny and timing of diversification in Alpine Rhithrogena (Ephemeroptera: Heptageniidae).

    Get PDF
    BACKGROUND: Larvae of the Holarctic mayfly genus Rhithrogena Eaton, 1881 (Ephemeroptera, Heptageniidae) are a diverse and abundant member of stream and river communities and are routinely used as bio-indicators of water quality. Rhithrogena is well diversified in the European Alps, with a number of locally endemic species, and several cryptic species have been recently detected. While several informal species groups are morphologically well defined, a lack of reliable characters for species identification considerably hampers their study. Their relationships, origin, timing of speciation and mechanisms promoting their diversification in the Alps are unknown. RESULTS: Here we present a species-level phylogeny of Rhithrogena in Europe using two mitochondrial and three nuclear gene regions. To improve sampling in a genus with many cryptic species, individuals were selected for analysis according to a recent DNA-based taxonomy rather than traditional nomenclature. A coalescent-based species tree and a reconstruction based on a supermatrix approach supported five of the species groups as monophyletic. A molecular clock, mapped on the most resolved phylogeny and calibrated using published mitochondrial evolution rates for insects, suggested an origin of Alpine Rhithrogena in the Oligocene/Miocene boundary. A diversification analysis that included simulation of missing species indicated a constant speciation rate over time, rather than any pronounced periods of rapid speciation. Ancestral state reconstructions provided evidence for downstream diversification in at least two species groups. CONCLUSIONS: Our species-level analyses of five gene regions provide clearer definitions of species groups within European Rhithrogena. A constant speciation rate over time suggests that the paleoclimatic fluctuations, including the Pleistocene glaciations, did not significantly influence the tempo of diversification of Alpine species. A downstream diversification trend in the hybrida and alpestris species groups supports a previously proposed headwater origin hypothesis for aquatic insects

    Glacial Refugia in Pathogens: European Genetic Structure of Anther Smut Pathogens on Silene latifolia and Silene dioica

    Get PDF
    Climate warming is predicted to increase the frequency of invasions by pathogens and to cause the large-scale redistribution of native host species, with dramatic consequences on the health of domesticated and wild populations of plants and animals. The study of historic range shifts in response to climate change, such as during interglacial cycles, can help in the prediction of the routes and dynamics of infectious diseases during the impending ecosystem changes. Here we studied the population structure in Europe of two Microbotryum species causing anther smut disease on the plants Silene latifolia and Silene dioica. Clustering analyses revealed the existence of genetically distinct groups for the pathogen on S. latifolia, providing a clear-cut example of European phylogeography reflecting recolonization from southern refugia after glaciation. The pathogen genetic structure was congruent with the genetic structure of its host species S. latifolia, suggesting dependence of the migration pathway of the anther smut fungus on its host. The fungus, however, appeared to have persisted in more numerous and smaller refugia than its host and to have experienced fewer events of large-scale dispersal. The anther smut pathogen on S. dioica also showed a strong phylogeographic structure that might be related to more northern glacial refugia. Differences in host ecology probably played a role in these differences in the pathogen population structure. Very high selfing rates were inferred in both fungal species, explaining the low levels of admixture between the genetic clusters. The systems studied here indicate that migration patterns caused by climate change can be expected to include pathogen invasions that follow the redistribution of their host species at continental scales, but also that the recolonization by pathogens is not simply a mirror of their hosts, even for obligate biotrophs, and that the ecology of hosts and pathogen mating systems likely affects recolonization patterns

    A Review of Offshore Wave Energy Extraction System

    No full text
    Offshore wave energy can be easily predicted and is proved to be much better than other forms of ocean energy such as shoreline wave, near-shore wave, and tides. Research on offshore wave energy extraction has been carried out in many countries to meet the growing demand for clean energy and reduce the impact on natural environment. This paper reviews the development of offshore wave energy extraction systems in the recent decade. Several aspects are introduced, including a global wave energy resource assessment, offshore wave energy extraction technologies, and the interaction between wave and floating buoy as well as linear generators. Although various offshore wave energy extraction systems have been proposed and even tested, it is difficult to decide which is the best one. In fact, design of floating buoy and linear generators plays an important role in the operational efficiency of offshore wave energy extraction system. This review provides some useful guidelines for future studies in this field
    corecore